| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnovex | GIF version | ||
| Description: The result of an operation is a set. (Contributed by Jim Kingdon, 15-Jan-2019.) |
| Ref | Expression |
|---|---|
| fnovex | ⊢ ((𝐹 Fn (𝐶 × 𝐷) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 6003 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
| 2 | opelxp 4748 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | |
| 3 | funfvex 5643 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 〈𝐴, 𝐵〉 ∈ dom 𝐹) → (𝐹‘〈𝐴, 𝐵〉) ∈ V) | |
| 4 | 3 | funfni 5422 | . . . 4 ⊢ ((𝐹 Fn (𝐶 × 𝐷) ∧ 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) → (𝐹‘〈𝐴, 𝐵〉) ∈ V) |
| 5 | 2, 4 | sylan2br 288 | . . 3 ⊢ ((𝐹 Fn (𝐶 × 𝐷) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → (𝐹‘〈𝐴, 𝐵〉) ∈ V) |
| 6 | 5 | 3impb 1223 | . 2 ⊢ ((𝐹 Fn (𝐶 × 𝐷) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐹‘〈𝐴, 𝐵〉) ∈ V) |
| 7 | 1, 6 | eqeltrid 2316 | 1 ⊢ ((𝐹 Fn (𝐶 × 𝐷) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 ∈ wcel 2200 Vcvv 2799 〈cop 3669 × cxp 4716 Fn wfn 5312 ‘cfv 5317 (class class class)co 6000 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fn 5320 df-fv 5325 df-ov 6003 |
| This theorem is referenced by: ovelrn 6153 mapsnen 6962 map1 6963 mapen 7003 mapdom1g 7004 mapxpen 7005 xpmapenlem 7006 fzen 10235 hashfacen 11053 wrdexg 11077 omctfn 13009 topnfn 13272 topnvalg 13279 prdsvallem 13300 prdsval 13301 ismhm 13489 mhmex 13490 rhmex 14115 fnpsr 14625 psrelbas 14633 psrplusgg 14636 psraddcl 14638 psr0cl 14639 psr0lid 14640 psrnegcl 14641 psrlinv 14642 psrgrp 14643 psr1clfi 14646 mplvalcoe 14648 mplbascoe 14649 fnmpl 14651 mplsubgfilemcl 14657 mplplusgg 14661 restbasg 14836 tgrest 14837 restco 14842 lmfval 14860 cnfval 14862 cnpfval 14863 cnpval 14866 txrest 14944 ismet 15012 isxmet 15013 xmetunirn 15026 plyval 15400 2omapen 16319 pw1mapen 16321 |
| Copyright terms: Public domain | W3C validator |