![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fnovex | GIF version |
Description: The result of an operation is a set. (Contributed by Jim Kingdon, 15-Jan-2019.) |
Ref | Expression |
---|---|
fnovex | ⊢ ((𝐹 Fn (𝐶 × 𝐷) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 5880 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩) | |
2 | opelxp 4658 | . . . 4 ⊢ (⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | |
3 | funfvex 5534 | . . . . 5 ⊢ ((Fun 𝐹 ∧ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹) → (𝐹‘⟨𝐴, 𝐵⟩) ∈ V) | |
4 | 3 | funfni 5318 | . . . 4 ⊢ ((𝐹 Fn (𝐶 × 𝐷) ∧ ⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷)) → (𝐹‘⟨𝐴, 𝐵⟩) ∈ V) |
5 | 2, 4 | sylan2br 288 | . . 3 ⊢ ((𝐹 Fn (𝐶 × 𝐷) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → (𝐹‘⟨𝐴, 𝐵⟩) ∈ V) |
6 | 5 | 3impb 1199 | . 2 ⊢ ((𝐹 Fn (𝐶 × 𝐷) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐹‘⟨𝐴, 𝐵⟩) ∈ V) |
7 | 1, 6 | eqeltrid 2264 | 1 ⊢ ((𝐹 Fn (𝐶 × 𝐷) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 978 ∈ wcel 2148 Vcvv 2739 ⟨cop 3597 × cxp 4626 Fn wfn 5213 ‘cfv 5218 (class class class)co 5877 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fn 5221 df-fv 5226 df-ov 5880 |
This theorem is referenced by: ovelrn 6025 mapsnen 6813 map1 6814 mapen 6848 mapdom1g 6849 mapxpen 6850 xpmapenlem 6851 fzen 10045 hashfacen 10818 omctfn 12446 topnfn 12698 topnvalg 12705 ismhm 12858 restbasg 13707 tgrest 13708 restco 13713 lmfval 13731 cnfval 13733 cnpfval 13734 cnpval 13737 txrest 13815 ismet 13883 isxmet 13884 xmetunirn 13897 |
Copyright terms: Public domain | W3C validator |