ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnovex GIF version

Theorem fnovex 5951
Description: The result of an operation is a set. (Contributed by Jim Kingdon, 15-Jan-2019.)
Assertion
Ref Expression
fnovex ((𝐹 Fn (𝐶 × 𝐷) ∧ 𝐴𝐶𝐵𝐷) → (𝐴𝐹𝐵) ∈ V)

Proof of Theorem fnovex
StepHypRef Expression
1 df-ov 5921 . 2 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2 opelxp 4689 . . . 4 (⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) ↔ (𝐴𝐶𝐵𝐷))
3 funfvex 5571 . . . . 5 ((Fun 𝐹 ∧ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹) → (𝐹‘⟨𝐴, 𝐵⟩) ∈ V)
43funfni 5354 . . . 4 ((𝐹 Fn (𝐶 × 𝐷) ∧ ⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷)) → (𝐹‘⟨𝐴, 𝐵⟩) ∈ V)
52, 4sylan2br 288 . . 3 ((𝐹 Fn (𝐶 × 𝐷) ∧ (𝐴𝐶𝐵𝐷)) → (𝐹‘⟨𝐴, 𝐵⟩) ∈ V)
653impb 1201 . 2 ((𝐹 Fn (𝐶 × 𝐷) ∧ 𝐴𝐶𝐵𝐷) → (𝐹‘⟨𝐴, 𝐵⟩) ∈ V)
71, 6eqeltrid 2280 1 ((𝐹 Fn (𝐶 × 𝐷) ∧ 𝐴𝐶𝐵𝐷) → (𝐴𝐹𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980  wcel 2164  Vcvv 2760  cop 3621   × cxp 4657   Fn wfn 5249  cfv 5254  (class class class)co 5918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-cnv 4667  df-co 4668  df-dm 4669  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-ov 5921
This theorem is referenced by:  ovelrn  6067  mapsnen  6865  map1  6866  mapen  6902  mapdom1g  6903  mapxpen  6904  xpmapenlem  6905  fzen  10109  hashfacen  10907  wrdexg  10925  omctfn  12600  topnfn  12855  topnvalg  12862  ismhm  13033  mhmex  13034  rhmex  13653  fnpsr  14153  psrelbas  14160  psrplusgg  14162  psraddcl  14164  restbasg  14336  tgrest  14337  restco  14342  lmfval  14360  cnfval  14362  cnpfval  14363  cnpval  14366  txrest  14444  ismet  14512  isxmet  14513  xmetunirn  14526  plyval  14878
  Copyright terms: Public domain W3C validator