ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnovex GIF version

Theorem fnovex 5875
Description: The result of an operation is a set. (Contributed by Jim Kingdon, 15-Jan-2019.)
Assertion
Ref Expression
fnovex ((𝐹 Fn (𝐶 × 𝐷) ∧ 𝐴𝐶𝐵𝐷) → (𝐴𝐹𝐵) ∈ V)

Proof of Theorem fnovex
StepHypRef Expression
1 df-ov 5845 . 2 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2 opelxp 4634 . . . 4 (⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) ↔ (𝐴𝐶𝐵𝐷))
3 funfvex 5503 . . . . 5 ((Fun 𝐹 ∧ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹) → (𝐹‘⟨𝐴, 𝐵⟩) ∈ V)
43funfni 5288 . . . 4 ((𝐹 Fn (𝐶 × 𝐷) ∧ ⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷)) → (𝐹‘⟨𝐴, 𝐵⟩) ∈ V)
52, 4sylan2br 286 . . 3 ((𝐹 Fn (𝐶 × 𝐷) ∧ (𝐴𝐶𝐵𝐷)) → (𝐹‘⟨𝐴, 𝐵⟩) ∈ V)
653impb 1189 . 2 ((𝐹 Fn (𝐶 × 𝐷) ∧ 𝐴𝐶𝐵𝐷) → (𝐹‘⟨𝐴, 𝐵⟩) ∈ V)
71, 6eqeltrid 2253 1 ((𝐹 Fn (𝐶 × 𝐷) ∧ 𝐴𝐶𝐵𝐷) → (𝐴𝐹𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 968  wcel 2136  Vcvv 2726  cop 3579   × cxp 4602   Fn wfn 5183  cfv 5188  (class class class)co 5842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196  df-ov 5845
This theorem is referenced by:  ovelrn  5990  mapsnen  6777  map1  6778  mapen  6812  mapdom1g  6813  mapxpen  6814  xpmapenlem  6815  fzen  9978  hashfacen  10749  omctfn  12376  topnfn  12561  topnvalg  12568  restbasg  12808  tgrest  12809  restco  12814  lmfval  12832  cnfval  12834  cnpfval  12835  cnpval  12838  txrest  12916  ismet  12984  isxmet  12985  xmetunirn  12998
  Copyright terms: Public domain W3C validator