![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fnovex | GIF version |
Description: The result of an operation is a set. (Contributed by Jim Kingdon, 15-Jan-2019.) |
Ref | Expression |
---|---|
fnovex | ⊢ ((𝐹 Fn (𝐶 × 𝐷) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 5693 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
2 | opelxp 4497 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | |
3 | funfvex 5357 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 〈𝐴, 𝐵〉 ∈ dom 𝐹) → (𝐹‘〈𝐴, 𝐵〉) ∈ V) | |
4 | 3 | funfni 5148 | . . . 4 ⊢ ((𝐹 Fn (𝐶 × 𝐷) ∧ 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) → (𝐹‘〈𝐴, 𝐵〉) ∈ V) |
5 | 2, 4 | sylan2br 283 | . . 3 ⊢ ((𝐹 Fn (𝐶 × 𝐷) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → (𝐹‘〈𝐴, 𝐵〉) ∈ V) |
6 | 5 | 3impb 1142 | . 2 ⊢ ((𝐹 Fn (𝐶 × 𝐷) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐹‘〈𝐴, 𝐵〉) ∈ V) |
7 | 1, 6 | syl5eqel 2181 | 1 ⊢ ((𝐹 Fn (𝐶 × 𝐷) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 927 ∈ wcel 1445 Vcvv 2633 〈cop 3469 × cxp 4465 Fn wfn 5044 ‘cfv 5049 (class class class)co 5690 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-rex 2376 df-v 2635 df-sbc 2855 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-uni 3676 df-br 3868 df-opab 3922 df-id 4144 df-xp 4473 df-cnv 4475 df-co 4476 df-dm 4477 df-iota 5014 df-fun 5051 df-fn 5052 df-fv 5057 df-ov 5693 |
This theorem is referenced by: ovelrn 5831 fnofval 5903 mapsnen 6608 map1 6609 mapen 6642 mapdom1g 6643 mapxpen 6644 xpmapenlem 6645 fzen 9606 hashfacen 10372 topnfn 11825 topnvalg 11832 restbasg 12036 tgrest 12037 restco 12042 lmfval 12060 cnfval 12062 cnpfval 12063 cnpval 12065 ismet 12146 isxmet 12147 xmetunirn 12160 |
Copyright terms: Public domain | W3C validator |