![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fnovex | GIF version |
Description: The result of an operation is a set. (Contributed by Jim Kingdon, 15-Jan-2019.) |
Ref | Expression |
---|---|
fnovex | ⊢ ((𝐹 Fn (𝐶 × 𝐷) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 5922 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
2 | opelxp 4690 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | |
3 | funfvex 5572 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 〈𝐴, 𝐵〉 ∈ dom 𝐹) → (𝐹‘〈𝐴, 𝐵〉) ∈ V) | |
4 | 3 | funfni 5355 | . . . 4 ⊢ ((𝐹 Fn (𝐶 × 𝐷) ∧ 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) → (𝐹‘〈𝐴, 𝐵〉) ∈ V) |
5 | 2, 4 | sylan2br 288 | . . 3 ⊢ ((𝐹 Fn (𝐶 × 𝐷) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → (𝐹‘〈𝐴, 𝐵〉) ∈ V) |
6 | 5 | 3impb 1201 | . 2 ⊢ ((𝐹 Fn (𝐶 × 𝐷) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐹‘〈𝐴, 𝐵〉) ∈ V) |
7 | 1, 6 | eqeltrid 2280 | 1 ⊢ ((𝐹 Fn (𝐶 × 𝐷) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 ∈ wcel 2164 Vcvv 2760 〈cop 3622 × cxp 4658 Fn wfn 5250 ‘cfv 5255 (class class class)co 5919 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fn 5258 df-fv 5263 df-ov 5922 |
This theorem is referenced by: ovelrn 6069 mapsnen 6867 map1 6868 mapen 6904 mapdom1g 6905 mapxpen 6906 xpmapenlem 6907 fzen 10112 hashfacen 10910 wrdexg 10928 omctfn 12603 topnfn 12858 topnvalg 12865 ismhm 13036 mhmex 13037 rhmex 13656 fnpsr 14164 psrelbas 14171 psrplusgg 14173 psraddcl 14175 restbasg 14347 tgrest 14348 restco 14353 lmfval 14371 cnfval 14373 cnpfval 14374 cnpval 14377 txrest 14455 ismet 14523 isxmet 14524 xmetunirn 14537 plyval 14911 |
Copyright terms: Public domain | W3C validator |