ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnovex GIF version

Theorem fnovex 5958
Description: The result of an operation is a set. (Contributed by Jim Kingdon, 15-Jan-2019.)
Assertion
Ref Expression
fnovex ((𝐹 Fn (𝐶 × 𝐷) ∧ 𝐴𝐶𝐵𝐷) → (𝐴𝐹𝐵) ∈ V)

Proof of Theorem fnovex
StepHypRef Expression
1 df-ov 5928 . 2 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2 opelxp 4694 . . . 4 (⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) ↔ (𝐴𝐶𝐵𝐷))
3 funfvex 5578 . . . . 5 ((Fun 𝐹 ∧ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹) → (𝐹‘⟨𝐴, 𝐵⟩) ∈ V)
43funfni 5361 . . . 4 ((𝐹 Fn (𝐶 × 𝐷) ∧ ⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷)) → (𝐹‘⟨𝐴, 𝐵⟩) ∈ V)
52, 4sylan2br 288 . . 3 ((𝐹 Fn (𝐶 × 𝐷) ∧ (𝐴𝐶𝐵𝐷)) → (𝐹‘⟨𝐴, 𝐵⟩) ∈ V)
653impb 1201 . 2 ((𝐹 Fn (𝐶 × 𝐷) ∧ 𝐴𝐶𝐵𝐷) → (𝐹‘⟨𝐴, 𝐵⟩) ∈ V)
71, 6eqeltrid 2283 1 ((𝐹 Fn (𝐶 × 𝐷) ∧ 𝐴𝐶𝐵𝐷) → (𝐴𝐹𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980  wcel 2167  Vcvv 2763  cop 3626   × cxp 4662   Fn wfn 5254  cfv 5259  (class class class)co 5925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-ov 5928
This theorem is referenced by:  ovelrn  6076  mapsnen  6879  map1  6880  mapen  6916  mapdom1g  6917  mapxpen  6918  xpmapenlem  6919  fzen  10137  hashfacen  10947  wrdexg  10965  omctfn  12687  topnfn  12948  topnvalg  12955  prdsvallem  12976  prdsval  12977  ismhm  13165  mhmex  13166  rhmex  13791  fnpsr  14301  psrelbas  14309  psrplusgg  14312  psraddcl  14314  psr0cl  14315  psr0lid  14316  psrnegcl  14317  psrlinv  14318  psrgrp  14319  psr1clfi  14322  mplvalcoe  14324  mplbascoe  14325  fnmpl  14327  mplsubgfilemcl  14333  mplplusgg  14337  restbasg  14512  tgrest  14513  restco  14518  lmfval  14536  cnfval  14538  cnpfval  14539  cnpval  14542  txrest  14620  ismet  14688  isxmet  14689  xmetunirn  14702  plyval  15076  2omapen  15751
  Copyright terms: Public domain W3C validator