ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnovex GIF version

Theorem fnovex 6033
Description: The result of an operation is a set. (Contributed by Jim Kingdon, 15-Jan-2019.)
Assertion
Ref Expression
fnovex ((𝐹 Fn (𝐶 × 𝐷) ∧ 𝐴𝐶𝐵𝐷) → (𝐴𝐹𝐵) ∈ V)

Proof of Theorem fnovex
StepHypRef Expression
1 df-ov 6003 . 2 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2 opelxp 4748 . . . 4 (⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) ↔ (𝐴𝐶𝐵𝐷))
3 funfvex 5643 . . . . 5 ((Fun 𝐹 ∧ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹) → (𝐹‘⟨𝐴, 𝐵⟩) ∈ V)
43funfni 5422 . . . 4 ((𝐹 Fn (𝐶 × 𝐷) ∧ ⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷)) → (𝐹‘⟨𝐴, 𝐵⟩) ∈ V)
52, 4sylan2br 288 . . 3 ((𝐹 Fn (𝐶 × 𝐷) ∧ (𝐴𝐶𝐵𝐷)) → (𝐹‘⟨𝐴, 𝐵⟩) ∈ V)
653impb 1223 . 2 ((𝐹 Fn (𝐶 × 𝐷) ∧ 𝐴𝐶𝐵𝐷) → (𝐹‘⟨𝐴, 𝐵⟩) ∈ V)
71, 6eqeltrid 2316 1 ((𝐹 Fn (𝐶 × 𝐷) ∧ 𝐴𝐶𝐵𝐷) → (𝐴𝐹𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002  wcel 2200  Vcvv 2799  cop 3669   × cxp 4716   Fn wfn 5312  cfv 5317  (class class class)co 6000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fn 5320  df-fv 5325  df-ov 6003
This theorem is referenced by:  ovelrn  6153  mapsnen  6962  map1  6963  mapen  7003  mapdom1g  7004  mapxpen  7005  xpmapenlem  7006  fzen  10235  hashfacen  11053  wrdexg  11077  omctfn  13009  topnfn  13272  topnvalg  13279  prdsvallem  13300  prdsval  13301  ismhm  13489  mhmex  13490  rhmex  14115  fnpsr  14625  psrelbas  14633  psrplusgg  14636  psraddcl  14638  psr0cl  14639  psr0lid  14640  psrnegcl  14641  psrlinv  14642  psrgrp  14643  psr1clfi  14646  mplvalcoe  14648  mplbascoe  14649  fnmpl  14651  mplsubgfilemcl  14657  mplplusgg  14661  restbasg  14836  tgrest  14837  restco  14842  lmfval  14860  cnfval  14862  cnpfval  14863  cnpval  14866  txrest  14944  ismet  15012  isxmet  15013  xmetunirn  15026  plyval  15400  2omapen  16319  pw1mapen  16321
  Copyright terms: Public domain W3C validator