ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnovex GIF version

Theorem fnovex 5808
Description: The result of an operation is a set. (Contributed by Jim Kingdon, 15-Jan-2019.)
Assertion
Ref Expression
fnovex ((𝐹 Fn (𝐶 × 𝐷) ∧ 𝐴𝐶𝐵𝐷) → (𝐴𝐹𝐵) ∈ V)

Proof of Theorem fnovex
StepHypRef Expression
1 df-ov 5781 . 2 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2 opelxp 4573 . . . 4 (⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷) ↔ (𝐴𝐶𝐵𝐷))
3 funfvex 5442 . . . . 5 ((Fun 𝐹 ∧ ⟨𝐴, 𝐵⟩ ∈ dom 𝐹) → (𝐹‘⟨𝐴, 𝐵⟩) ∈ V)
43funfni 5227 . . . 4 ((𝐹 Fn (𝐶 × 𝐷) ∧ ⟨𝐴, 𝐵⟩ ∈ (𝐶 × 𝐷)) → (𝐹‘⟨𝐴, 𝐵⟩) ∈ V)
52, 4sylan2br 286 . . 3 ((𝐹 Fn (𝐶 × 𝐷) ∧ (𝐴𝐶𝐵𝐷)) → (𝐹‘⟨𝐴, 𝐵⟩) ∈ V)
653impb 1178 . 2 ((𝐹 Fn (𝐶 × 𝐷) ∧ 𝐴𝐶𝐵𝐷) → (𝐹‘⟨𝐴, 𝐵⟩) ∈ V)
71, 6eqeltrid 2227 1 ((𝐹 Fn (𝐶 × 𝐷) ∧ 𝐴𝐶𝐵𝐷) → (𝐴𝐹𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 963  wcel 1481  Vcvv 2687  cop 3531   × cxp 4541   Fn wfn 5122  cfv 5127  (class class class)co 5778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4050  ax-pow 4102  ax-pr 4135
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2689  df-sbc 2911  df-un 3076  df-in 3078  df-ss 3085  df-pw 3513  df-sn 3534  df-pr 3535  df-op 3537  df-uni 3741  df-br 3934  df-opab 3994  df-id 4219  df-xp 4549  df-cnv 4551  df-co 4552  df-dm 4553  df-iota 5092  df-fun 5129  df-fn 5130  df-fv 5135  df-ov 5781
This theorem is referenced by:  ovelrn  5923  mapsnen  6709  map1  6710  mapen  6744  mapdom1g  6745  mapxpen  6746  xpmapenlem  6747  fzen  9850  hashfacen  10607  omctfn  11983  topnfn  12155  topnvalg  12162  restbasg  12367  tgrest  12368  restco  12373  lmfval  12391  cnfval  12393  cnpfval  12394  cnpval  12397  txrest  12475  ismet  12543  isxmet  12544  xmetunirn  12557
  Copyright terms: Public domain W3C validator