Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fnovex | GIF version |
Description: The result of an operation is a set. (Contributed by Jim Kingdon, 15-Jan-2019.) |
Ref | Expression |
---|---|
fnovex | ⊢ ((𝐹 Fn (𝐶 × 𝐷) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 5868 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
2 | opelxp 4650 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | |
3 | funfvex 5524 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 〈𝐴, 𝐵〉 ∈ dom 𝐹) → (𝐹‘〈𝐴, 𝐵〉) ∈ V) | |
4 | 3 | funfni 5308 | . . . 4 ⊢ ((𝐹 Fn (𝐶 × 𝐷) ∧ 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) → (𝐹‘〈𝐴, 𝐵〉) ∈ V) |
5 | 2, 4 | sylan2br 288 | . . 3 ⊢ ((𝐹 Fn (𝐶 × 𝐷) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → (𝐹‘〈𝐴, 𝐵〉) ∈ V) |
6 | 5 | 3impb 1199 | . 2 ⊢ ((𝐹 Fn (𝐶 × 𝐷) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐹‘〈𝐴, 𝐵〉) ∈ V) |
7 | 1, 6 | eqeltrid 2262 | 1 ⊢ ((𝐹 Fn (𝐶 × 𝐷) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 978 ∈ wcel 2146 Vcvv 2735 〈cop 3592 × cxp 4618 Fn wfn 5203 ‘cfv 5208 (class class class)co 5865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-sbc 2961 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-id 4287 df-xp 4626 df-cnv 4628 df-co 4629 df-dm 4630 df-iota 5170 df-fun 5210 df-fn 5211 df-fv 5216 df-ov 5868 |
This theorem is referenced by: ovelrn 6013 mapsnen 6801 map1 6802 mapen 6836 mapdom1g 6837 mapxpen 6838 xpmapenlem 6839 fzen 10011 hashfacen 10782 omctfn 12409 topnfn 12613 topnvalg 12620 ismhm 12714 restbasg 13219 tgrest 13220 restco 13225 lmfval 13243 cnfval 13245 cnpfval 13246 cnpval 13249 txrest 13327 ismet 13395 isxmet 13396 xmetunirn 13409 |
Copyright terms: Public domain | W3C validator |