| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnovex | GIF version | ||
| Description: The result of an operation is a set. (Contributed by Jim Kingdon, 15-Jan-2019.) |
| Ref | Expression |
|---|---|
| fnovex | ⊢ ((𝐹 Fn (𝐶 × 𝐷) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 5960 | . 2 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
| 2 | opelxp 4713 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | |
| 3 | funfvex 5606 | . . . . 5 ⊢ ((Fun 𝐹 ∧ 〈𝐴, 𝐵〉 ∈ dom 𝐹) → (𝐹‘〈𝐴, 𝐵〉) ∈ V) | |
| 4 | 3 | funfni 5385 | . . . 4 ⊢ ((𝐹 Fn (𝐶 × 𝐷) ∧ 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) → (𝐹‘〈𝐴, 𝐵〉) ∈ V) |
| 5 | 2, 4 | sylan2br 288 | . . 3 ⊢ ((𝐹 Fn (𝐶 × 𝐷) ∧ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) → (𝐹‘〈𝐴, 𝐵〉) ∈ V) |
| 6 | 5 | 3impb 1202 | . 2 ⊢ ((𝐹 Fn (𝐶 × 𝐷) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐹‘〈𝐴, 𝐵〉) ∈ V) |
| 7 | 1, 6 | eqeltrid 2293 | 1 ⊢ ((𝐹 Fn (𝐶 × 𝐷) ∧ 𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 ∈ wcel 2177 Vcvv 2773 〈cop 3641 × cxp 4681 Fn wfn 5275 ‘cfv 5280 (class class class)co 5957 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-id 4348 df-xp 4689 df-cnv 4691 df-co 4692 df-dm 4693 df-iota 5241 df-fun 5282 df-fn 5283 df-fv 5288 df-ov 5960 |
| This theorem is referenced by: ovelrn 6108 mapsnen 6917 map1 6918 mapen 6958 mapdom1g 6959 mapxpen 6960 xpmapenlem 6961 fzen 10185 hashfacen 11003 wrdexg 11027 omctfn 12889 topnfn 13151 topnvalg 13158 prdsvallem 13179 prdsval 13180 ismhm 13368 mhmex 13369 rhmex 13994 fnpsr 14504 psrelbas 14512 psrplusgg 14515 psraddcl 14517 psr0cl 14518 psr0lid 14519 psrnegcl 14520 psrlinv 14521 psrgrp 14522 psr1clfi 14525 mplvalcoe 14527 mplbascoe 14528 fnmpl 14530 mplsubgfilemcl 14536 mplplusgg 14540 restbasg 14715 tgrest 14716 restco 14721 lmfval 14739 cnfval 14741 cnpfval 14742 cnpval 14745 txrest 14823 ismet 14891 isxmet 14892 xmetunirn 14905 plyval 15279 2omapen 16072 pw1mapen 16074 |
| Copyright terms: Public domain | W3C validator |