ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzzd GIF version

Theorem frec2uzzd 10558
Description: The value of 𝐺 (see frec2uz0d 10557) is an integer. (Contributed by Jim Kingdon, 16-May-2020.)
Hypotheses
Ref Expression
frec2uz.1 (𝜑𝐶 ∈ ℤ)
frec2uz.2 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
frec2uzzd.a (𝜑𝐴 ∈ ω)
Assertion
Ref Expression
frec2uzzd (𝜑 → (𝐺𝐴) ∈ ℤ)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐺(𝑥)

Proof of Theorem frec2uzzd
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 frec2uz.2 . . 3 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)
21fveq1i 5587 . 2 (𝐺𝐴) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘𝐴)
3 frec2uz.1 . . 3 (𝜑𝐶 ∈ ℤ)
4 simpr 110 . . . . 5 ((𝜑𝑘 ∈ ℤ) → 𝑘 ∈ ℤ)
54peano2zd 9511 . . . . 5 ((𝜑𝑘 ∈ ℤ) → (𝑘 + 1) ∈ ℤ)
6 oveq1 5961 . . . . . 6 (𝑥 = 𝑘 → (𝑥 + 1) = (𝑘 + 1))
7 eqid 2206 . . . . . 6 (𝑥 ∈ ℤ ↦ (𝑥 + 1)) = (𝑥 ∈ ℤ ↦ (𝑥 + 1))
86, 7fvmptg 5665 . . . . 5 ((𝑘 ∈ ℤ ∧ (𝑘 + 1) ∈ ℤ) → ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑘) = (𝑘 + 1))
94, 5, 8syl2anc 411 . . . 4 ((𝜑𝑘 ∈ ℤ) → ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑘) = (𝑘 + 1))
109, 5eqeltrd 2283 . . 3 ((𝜑𝑘 ∈ ℤ) → ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑘) ∈ ℤ)
11 frec2uzzd.a . . 3 (𝜑𝐴 ∈ ω)
123, 10, 11freccl 6499 . 2 (𝜑 → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘𝐴) ∈ ℤ)
132, 12eqeltrid 2293 1 (𝜑 → (𝐺𝐴) ∈ ℤ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  cmpt 4110  ωcom 4643  cfv 5277  (class class class)co 5954  freccfrec 6486  1c1 7939   + caddc 7941  cz 9385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-nul 4175  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-iinf 4641  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-addcom 8038  ax-addass 8040  ax-distr 8042  ax-i2m1 8043  ax-0id 8046  ax-rnegex 8047  ax-cnre 8049
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-tr 4148  df-id 4345  df-iord 4418  df-on 4420  df-ilim 4421  df-suc 4423  df-iom 4644  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-recs 6401  df-frec 6487  df-sub 8258  df-neg 8259  df-inn 9050  df-n0 9309  df-z 9386
This theorem is referenced by:  frec2uzsucd  10559  frec2uzltd  10561  frec2uzlt2d  10562  frec2uzf1od  10564  frec2uzrdg  10567  frec2uzled  10587
  Copyright terms: Public domain W3C validator