![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > frec2uzzd | GIF version |
Description: The value of 𝐺 (see frec2uz0d 10425) is an integer. (Contributed by Jim Kingdon, 16-May-2020.) |
Ref | Expression |
---|---|
frec2uz.1 | ⊢ (𝜑 → 𝐶 ∈ ℤ) |
frec2uz.2 | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) |
frec2uzzd.a | ⊢ (𝜑 → 𝐴 ∈ ω) |
Ref | Expression |
---|---|
frec2uzzd | ⊢ (𝜑 → (𝐺‘𝐴) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frec2uz.2 | . . 3 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) | |
2 | 1 | fveq1i 5532 | . 2 ⊢ (𝐺‘𝐴) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘𝐴) |
3 | frec2uz.1 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℤ) | |
4 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℤ) | |
5 | 4 | peano2zd 9403 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → (𝑘 + 1) ∈ ℤ) |
6 | oveq1 5899 | . . . . . 6 ⊢ (𝑥 = 𝑘 → (𝑥 + 1) = (𝑘 + 1)) | |
7 | eqid 2189 | . . . . . 6 ⊢ (𝑥 ∈ ℤ ↦ (𝑥 + 1)) = (𝑥 ∈ ℤ ↦ (𝑥 + 1)) | |
8 | 6, 7 | fvmptg 5609 | . . . . 5 ⊢ ((𝑘 ∈ ℤ ∧ (𝑘 + 1) ∈ ℤ) → ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑘) = (𝑘 + 1)) |
9 | 4, 5, 8 | syl2anc 411 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑘) = (𝑘 + 1)) |
10 | 9, 5 | eqeltrd 2266 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑘) ∈ ℤ) |
11 | frec2uzzd.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ω) | |
12 | 3, 10, 11 | freccl 6423 | . 2 ⊢ (𝜑 → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘𝐴) ∈ ℤ) |
13 | 2, 12 | eqeltrid 2276 | 1 ⊢ (𝜑 → (𝐺‘𝐴) ∈ ℤ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2160 ↦ cmpt 4079 ωcom 4604 ‘cfv 5232 (class class class)co 5892 freccfrec 6410 1c1 7837 + caddc 7839 ℤcz 9278 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-nul 4144 ax-pow 4189 ax-pr 4224 ax-un 4448 ax-setind 4551 ax-iinf 4602 ax-cnex 7927 ax-resscn 7928 ax-1cn 7929 ax-1re 7930 ax-icn 7931 ax-addcl 7932 ax-addrcl 7933 ax-mulcl 7934 ax-addcom 7936 ax-addass 7938 ax-distr 7940 ax-i2m1 7941 ax-0id 7944 ax-rnegex 7945 ax-cnre 7947 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-tr 4117 df-id 4308 df-iord 4381 df-on 4383 df-ilim 4384 df-suc 4386 df-iom 4605 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5234 df-fn 5235 df-f 5236 df-f1 5237 df-fo 5238 df-f1o 5239 df-fv 5240 df-riota 5848 df-ov 5895 df-oprab 5896 df-mpo 5897 df-recs 6325 df-frec 6411 df-sub 8155 df-neg 8156 df-inn 8945 df-n0 9202 df-z 9279 |
This theorem is referenced by: frec2uzsucd 10427 frec2uzltd 10429 frec2uzlt2d 10430 frec2uzf1od 10432 frec2uzrdg 10435 frec2uzled 10455 |
Copyright terms: Public domain | W3C validator |