![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > frec2uzzd | GIF version |
Description: The value of 𝐺 (see frec2uz0d 10399) is an integer. (Contributed by Jim Kingdon, 16-May-2020.) |
Ref | Expression |
---|---|
frec2uz.1 | ⊢ (𝜑 → 𝐶 ∈ ℤ) |
frec2uz.2 | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) |
frec2uzzd.a | ⊢ (𝜑 → 𝐴 ∈ ω) |
Ref | Expression |
---|---|
frec2uzzd | ⊢ (𝜑 → (𝐺‘𝐴) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frec2uz.2 | . . 3 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶) | |
2 | 1 | fveq1i 5517 | . 2 ⊢ (𝐺‘𝐴) = (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘𝐴) |
3 | frec2uz.1 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℤ) | |
4 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℤ) | |
5 | 4 | peano2zd 9378 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → (𝑘 + 1) ∈ ℤ) |
6 | oveq1 5882 | . . . . . 6 ⊢ (𝑥 = 𝑘 → (𝑥 + 1) = (𝑘 + 1)) | |
7 | eqid 2177 | . . . . . 6 ⊢ (𝑥 ∈ ℤ ↦ (𝑥 + 1)) = (𝑥 ∈ ℤ ↦ (𝑥 + 1)) | |
8 | 6, 7 | fvmptg 5593 | . . . . 5 ⊢ ((𝑘 ∈ ℤ ∧ (𝑘 + 1) ∈ ℤ) → ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑘) = (𝑘 + 1)) |
9 | 4, 5, 8 | syl2anc 411 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑘) = (𝑘 + 1)) |
10 | 9, 5 | eqeltrd 2254 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → ((𝑥 ∈ ℤ ↦ (𝑥 + 1))‘𝑘) ∈ ℤ) |
11 | frec2uzzd.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ω) | |
12 | 3, 10, 11 | freccl 6404 | . 2 ⊢ (𝜑 → (frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 𝐶)‘𝐴) ∈ ℤ) |
13 | 2, 12 | eqeltrid 2264 | 1 ⊢ (𝜑 → (𝐺‘𝐴) ∈ ℤ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 ↦ cmpt 4065 ωcom 4590 ‘cfv 5217 (class class class)co 5875 freccfrec 6391 1c1 7812 + caddc 7814 ℤcz 9253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4119 ax-sep 4122 ax-nul 4130 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 ax-iinf 4588 ax-cnex 7902 ax-resscn 7903 ax-1cn 7904 ax-1re 7905 ax-icn 7906 ax-addcl 7907 ax-addrcl 7908 ax-mulcl 7909 ax-addcom 7911 ax-addass 7913 ax-distr 7915 ax-i2m1 7916 ax-0id 7919 ax-rnegex 7920 ax-cnre 7922 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2740 df-sbc 2964 df-csb 3059 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-nul 3424 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-iun 3889 df-br 4005 df-opab 4066 df-mpt 4067 df-tr 4103 df-id 4294 df-iord 4367 df-on 4369 df-ilim 4370 df-suc 4372 df-iom 4591 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-f1 5222 df-fo 5223 df-f1o 5224 df-fv 5225 df-riota 5831 df-ov 5878 df-oprab 5879 df-mpo 5880 df-recs 6306 df-frec 6392 df-sub 8130 df-neg 8131 df-inn 8920 df-n0 9177 df-z 9254 |
This theorem is referenced by: frec2uzsucd 10401 frec2uzltd 10403 frec2uzlt2d 10404 frec2uzf1od 10406 frec2uzrdg 10409 frec2uzled 10429 |
Copyright terms: Public domain | W3C validator |