| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grstructd2dom | GIF version | ||
| Description: If any representation of a graph with vertices 𝑉 and edges 𝐸 has a certain property 𝜓, then any structure with base set 𝑉 and value 𝐸 in the slot for edge functions (which is such a representation of a graph with vertices 𝑉 and edges 𝐸) has this property. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 9-Jun-2021.) |
| Ref | Expression |
|---|---|
| gropd.g | ⊢ (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓)) |
| gropd.v | ⊢ (𝜑 → 𝑉 ∈ 𝑈) |
| gropd.e | ⊢ (𝜑 → 𝐸 ∈ 𝑊) |
| grstructd.s | ⊢ (𝜑 → 𝑆 ∈ 𝑋) |
| grstructd.f | ⊢ (𝜑 → Fun (𝑆 ∖ {∅})) |
| grstructd2dom.d | ⊢ (𝜑 → 2o ≼ dom 𝑆) |
| grstructd.b | ⊢ (𝜑 → (Base‘𝑆) = 𝑉) |
| grstructd.e | ⊢ (𝜑 → (.ef‘𝑆) = 𝐸) |
| Ref | Expression |
|---|---|
| grstructd2dom | ⊢ (𝜑 → [𝑆 / 𝑔]𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grstructd.s | . 2 ⊢ (𝜑 → 𝑆 ∈ 𝑋) | |
| 2 | gropd.g | . 2 ⊢ (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓)) | |
| 3 | grstructd.f | . . . . 5 ⊢ (𝜑 → Fun (𝑆 ∖ {∅})) | |
| 4 | grstructd2dom.d | . . . . 5 ⊢ (𝜑 → 2o ≼ dom 𝑆) | |
| 5 | funvtxdm2domval 15568 | . . . . 5 ⊢ ((𝑆 ∈ 𝑋 ∧ Fun (𝑆 ∖ {∅}) ∧ 2o ≼ dom 𝑆) → (Vtx‘𝑆) = (Base‘𝑆)) | |
| 6 | 1, 3, 4, 5 | syl3anc 1249 | . . . 4 ⊢ (𝜑 → (Vtx‘𝑆) = (Base‘𝑆)) |
| 7 | grstructd.b | . . . 4 ⊢ (𝜑 → (Base‘𝑆) = 𝑉) | |
| 8 | 6, 7 | eqtrd 2237 | . . 3 ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) |
| 9 | funiedgdm2domval 15569 | . . . . 5 ⊢ ((𝑆 ∈ 𝑋 ∧ Fun (𝑆 ∖ {∅}) ∧ 2o ≼ dom 𝑆) → (iEdg‘𝑆) = (.ef‘𝑆)) | |
| 10 | 1, 3, 4, 9 | syl3anc 1249 | . . . 4 ⊢ (𝜑 → (iEdg‘𝑆) = (.ef‘𝑆)) |
| 11 | grstructd.e | . . . 4 ⊢ (𝜑 → (.ef‘𝑆) = 𝐸) | |
| 12 | 10, 11 | eqtrd 2237 | . . 3 ⊢ (𝜑 → (iEdg‘𝑆) = 𝐸) |
| 13 | 8, 12 | jca 306 | . 2 ⊢ (𝜑 → ((Vtx‘𝑆) = 𝑉 ∧ (iEdg‘𝑆) = 𝐸)) |
| 14 | nfcv 2347 | . . 3 ⊢ Ⅎ𝑔𝑆 | |
| 15 | nfv 1550 | . . . 4 ⊢ Ⅎ𝑔((Vtx‘𝑆) = 𝑉 ∧ (iEdg‘𝑆) = 𝐸) | |
| 16 | nfsbc1v 3016 | . . . 4 ⊢ Ⅎ𝑔[𝑆 / 𝑔]𝜓 | |
| 17 | 15, 16 | nfim 1594 | . . 3 ⊢ Ⅎ𝑔(((Vtx‘𝑆) = 𝑉 ∧ (iEdg‘𝑆) = 𝐸) → [𝑆 / 𝑔]𝜓) |
| 18 | fveqeq2 5584 | . . . . 5 ⊢ (𝑔 = 𝑆 → ((Vtx‘𝑔) = 𝑉 ↔ (Vtx‘𝑆) = 𝑉)) | |
| 19 | fveqeq2 5584 | . . . . 5 ⊢ (𝑔 = 𝑆 → ((iEdg‘𝑔) = 𝐸 ↔ (iEdg‘𝑆) = 𝐸)) | |
| 20 | 18, 19 | anbi12d 473 | . . . 4 ⊢ (𝑔 = 𝑆 → (((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) ↔ ((Vtx‘𝑆) = 𝑉 ∧ (iEdg‘𝑆) = 𝐸))) |
| 21 | sbceq1a 3007 | . . . 4 ⊢ (𝑔 = 𝑆 → (𝜓 ↔ [𝑆 / 𝑔]𝜓)) | |
| 22 | 20, 21 | imbi12d 234 | . . 3 ⊢ (𝑔 = 𝑆 → ((((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓) ↔ (((Vtx‘𝑆) = 𝑉 ∧ (iEdg‘𝑆) = 𝐸) → [𝑆 / 𝑔]𝜓))) |
| 23 | 14, 17, 22 | spcgf 2854 | . 2 ⊢ (𝑆 ∈ 𝑋 → (∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓) → (((Vtx‘𝑆) = 𝑉 ∧ (iEdg‘𝑆) = 𝐸) → [𝑆 / 𝑔]𝜓))) |
| 24 | 1, 2, 13, 23 | syl3c 63 | 1 ⊢ (𝜑 → [𝑆 / 𝑔]𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1370 = wceq 1372 ∈ wcel 2175 [wsbc 2997 ∖ cdif 3162 ∅c0 3459 {csn 3632 class class class wbr 4043 dom cdm 4674 Fun wfun 5264 ‘cfv 5270 2oc2o 6495 ≼ cdom 6825 Basecbs 12774 .efcedgf 15545 Vtxcvtx 15553 iEdgciedg 15554 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-suc 4417 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-1o 6501 df-2o 6502 df-dom 6828 df-sub 8244 df-inn 9036 df-2 9094 df-3 9095 df-4 9096 df-5 9097 df-6 9098 df-7 9099 df-8 9100 df-9 9101 df-n0 9295 df-dec 9504 df-ndx 12777 df-slot 12778 df-base 12780 df-edgf 15546 df-vtx 15555 df-iedg 15556 |
| This theorem is referenced by: grstructeld2dom 15589 |
| Copyright terms: Public domain | W3C validator |