| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grstructd2dom | GIF version | ||
| Description: If any representation of a graph with vertices 𝑉 and edges 𝐸 has a certain property 𝜓, then any structure with base set 𝑉 and value 𝐸 in the slot for edge functions (which is such a representation of a graph with vertices 𝑉 and edges 𝐸) has this property. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 9-Jun-2021.) |
| Ref | Expression |
|---|---|
| gropd.g | ⊢ (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓)) |
| gropd.v | ⊢ (𝜑 → 𝑉 ∈ 𝑈) |
| gropd.e | ⊢ (𝜑 → 𝐸 ∈ 𝑊) |
| grstructd.s | ⊢ (𝜑 → 𝑆 ∈ 𝑋) |
| grstructd.f | ⊢ (𝜑 → Fun (𝑆 ∖ {∅})) |
| grstructd2dom.d | ⊢ (𝜑 → 2o ≼ dom 𝑆) |
| grstructd.b | ⊢ (𝜑 → (Base‘𝑆) = 𝑉) |
| grstructd.e | ⊢ (𝜑 → (.ef‘𝑆) = 𝐸) |
| Ref | Expression |
|---|---|
| grstructd2dom | ⊢ (𝜑 → [𝑆 / 𝑔]𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grstructd.s | . 2 ⊢ (𝜑 → 𝑆 ∈ 𝑋) | |
| 2 | gropd.g | . 2 ⊢ (𝜑 → ∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓)) | |
| 3 | grstructd.f | . . . . 5 ⊢ (𝜑 → Fun (𝑆 ∖ {∅})) | |
| 4 | grstructd2dom.d | . . . . 5 ⊢ (𝜑 → 2o ≼ dom 𝑆) | |
| 5 | funvtxdm2domval 15824 | . . . . 5 ⊢ ((𝑆 ∈ 𝑋 ∧ Fun (𝑆 ∖ {∅}) ∧ 2o ≼ dom 𝑆) → (Vtx‘𝑆) = (Base‘𝑆)) | |
| 6 | 1, 3, 4, 5 | syl3anc 1271 | . . . 4 ⊢ (𝜑 → (Vtx‘𝑆) = (Base‘𝑆)) |
| 7 | grstructd.b | . . . 4 ⊢ (𝜑 → (Base‘𝑆) = 𝑉) | |
| 8 | 6, 7 | eqtrd 2262 | . . 3 ⊢ (𝜑 → (Vtx‘𝑆) = 𝑉) |
| 9 | funiedgdm2domval 15825 | . . . . 5 ⊢ ((𝑆 ∈ 𝑋 ∧ Fun (𝑆 ∖ {∅}) ∧ 2o ≼ dom 𝑆) → (iEdg‘𝑆) = (.ef‘𝑆)) | |
| 10 | 1, 3, 4, 9 | syl3anc 1271 | . . . 4 ⊢ (𝜑 → (iEdg‘𝑆) = (.ef‘𝑆)) |
| 11 | grstructd.e | . . . 4 ⊢ (𝜑 → (.ef‘𝑆) = 𝐸) | |
| 12 | 10, 11 | eqtrd 2262 | . . 3 ⊢ (𝜑 → (iEdg‘𝑆) = 𝐸) |
| 13 | 8, 12 | jca 306 | . 2 ⊢ (𝜑 → ((Vtx‘𝑆) = 𝑉 ∧ (iEdg‘𝑆) = 𝐸)) |
| 14 | nfcv 2372 | . . 3 ⊢ Ⅎ𝑔𝑆 | |
| 15 | nfv 1574 | . . . 4 ⊢ Ⅎ𝑔((Vtx‘𝑆) = 𝑉 ∧ (iEdg‘𝑆) = 𝐸) | |
| 16 | nfsbc1v 3047 | . . . 4 ⊢ Ⅎ𝑔[𝑆 / 𝑔]𝜓 | |
| 17 | 15, 16 | nfim 1618 | . . 3 ⊢ Ⅎ𝑔(((Vtx‘𝑆) = 𝑉 ∧ (iEdg‘𝑆) = 𝐸) → [𝑆 / 𝑔]𝜓) |
| 18 | fveqeq2 5635 | . . . . 5 ⊢ (𝑔 = 𝑆 → ((Vtx‘𝑔) = 𝑉 ↔ (Vtx‘𝑆) = 𝑉)) | |
| 19 | fveqeq2 5635 | . . . . 5 ⊢ (𝑔 = 𝑆 → ((iEdg‘𝑔) = 𝐸 ↔ (iEdg‘𝑆) = 𝐸)) | |
| 20 | 18, 19 | anbi12d 473 | . . . 4 ⊢ (𝑔 = 𝑆 → (((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) ↔ ((Vtx‘𝑆) = 𝑉 ∧ (iEdg‘𝑆) = 𝐸))) |
| 21 | sbceq1a 3038 | . . . 4 ⊢ (𝑔 = 𝑆 → (𝜓 ↔ [𝑆 / 𝑔]𝜓)) | |
| 22 | 20, 21 | imbi12d 234 | . . 3 ⊢ (𝑔 = 𝑆 → ((((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓) ↔ (((Vtx‘𝑆) = 𝑉 ∧ (iEdg‘𝑆) = 𝐸) → [𝑆 / 𝑔]𝜓))) |
| 23 | 14, 17, 22 | spcgf 2885 | . 2 ⊢ (𝑆 ∈ 𝑋 → (∀𝑔(((Vtx‘𝑔) = 𝑉 ∧ (iEdg‘𝑔) = 𝐸) → 𝜓) → (((Vtx‘𝑆) = 𝑉 ∧ (iEdg‘𝑆) = 𝐸) → [𝑆 / 𝑔]𝜓))) |
| 24 | 1, 2, 13, 23 | syl3c 63 | 1 ⊢ (𝜑 → [𝑆 / 𝑔]𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1393 = wceq 1395 ∈ wcel 2200 [wsbc 3028 ∖ cdif 3194 ∅c0 3491 {csn 3666 class class class wbr 4082 dom cdm 4718 Fun wfun 5311 ‘cfv 5317 2oc2o 6554 ≼ cdom 6884 Basecbs 13027 .efcedgf 15799 Vtxcvtx 15807 iEdgciedg 15808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-suc 4461 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-1o 6560 df-2o 6561 df-dom 6887 df-sub 8315 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-7 9170 df-8 9171 df-9 9172 df-n0 9366 df-dec 9575 df-ndx 13030 df-slot 13031 df-base 13033 df-edgf 15800 df-vtx 15809 df-iedg 15810 |
| This theorem is referenced by: grstructeld2dom 15845 |
| Copyright terms: Public domain | W3C validator |