ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsummgmpropd Unicode version

Theorem gsummgmpropd 13422
Description: A stronger version of gsumpropd 13420 if at least one of the involved structures is a magma, see gsumpropd2 13421. (Contributed by AV, 31-Jan-2020.)
Hypotheses
Ref Expression
gsummgmpropd.f  |-  ( ph  ->  F  e.  V )
gsummgmpropd.g  |-  ( ph  ->  G  e.  W )
gsummgmpropd.h  |-  ( ph  ->  H  e.  X )
gsummgmpropd.b  |-  ( ph  ->  ( Base `  G
)  =  ( Base `  H ) )
gsummgmpropd.m  |-  ( ph  ->  G  e. Mgm )
gsummgmpropd.e  |-  ( (
ph  /\  ( s  e.  ( Base `  G
)  /\  t  e.  ( Base `  G )
) )  ->  (
s ( +g  `  G
) t )  =  ( s ( +g  `  H ) t ) )
gsummgmpropd.n  |-  ( ph  ->  Fun  F )
gsummgmpropd.r  |-  ( ph  ->  ran  F  C_  ( Base `  G ) )
Assertion
Ref Expression
gsummgmpropd  |-  ( ph  ->  ( G  gsumg  F )  =  ( H  gsumg  F ) )
Distinct variable groups:    F, s, t    G, s, t    H, s, t    ph, s, t
Allowed substitution hints:    V( t, s)    W( t, s)    X( t, s)

Proof of Theorem gsummgmpropd
StepHypRef Expression
1 gsummgmpropd.f . 2  |-  ( ph  ->  F  e.  V )
2 gsummgmpropd.g . 2  |-  ( ph  ->  G  e.  W )
3 gsummgmpropd.h . 2  |-  ( ph  ->  H  e.  X )
4 gsummgmpropd.b . 2  |-  ( ph  ->  ( Base `  G
)  =  ( Base `  H ) )
5 gsummgmpropd.m . . . 4  |-  ( ph  ->  G  e. Mgm )
6 eqid 2229 . . . . . 6  |-  ( Base `  G )  =  (
Base `  G )
7 eqid 2229 . . . . . 6  |-  ( +g  `  G )  =  ( +g  `  G )
86, 7mgmcl 13387 . . . . 5  |-  ( ( G  e. Mgm  /\  s  e.  ( Base `  G
)  /\  t  e.  ( Base `  G )
)  ->  ( s
( +g  `  G ) t )  e.  (
Base `  G )
)
983expib 1230 . . . 4  |-  ( G  e. Mgm  ->  ( ( s  e.  ( Base `  G
)  /\  t  e.  ( Base `  G )
)  ->  ( s
( +g  `  G ) t )  e.  (
Base `  G )
) )
105, 9syl 14 . . 3  |-  ( ph  ->  ( ( s  e.  ( Base `  G
)  /\  t  e.  ( Base `  G )
)  ->  ( s
( +g  `  G ) t )  e.  (
Base `  G )
) )
1110imp 124 . 2  |-  ( (
ph  /\  ( s  e.  ( Base `  G
)  /\  t  e.  ( Base `  G )
) )  ->  (
s ( +g  `  G
) t )  e.  ( Base `  G
) )
12 gsummgmpropd.e . 2  |-  ( (
ph  /\  ( s  e.  ( Base `  G
)  /\  t  e.  ( Base `  G )
) )  ->  (
s ( +g  `  G
) t )  =  ( s ( +g  `  H ) t ) )
13 gsummgmpropd.n . 2  |-  ( ph  ->  Fun  F )
14 gsummgmpropd.r . 2  |-  ( ph  ->  ran  F  C_  ( Base `  G ) )
151, 2, 3, 4, 11, 12, 13, 14gsumpropd2 13421 1  |-  ( ph  ->  ( G  gsumg  F )  =  ( H  gsumg  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200    C_ wss 3197   ran crn 4719   Fun wfun 5311   ` cfv 5317  (class class class)co 6000   Basecbs 13027   +g cplusg 13105    gsumg cgsu 13285  Mgmcmgm 13382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-2 9165  df-n0 9366  df-z 9443  df-uz 9719  df-fz 10201  df-fzo 10335  df-seqfrec 10665  df-ndx 13030  df-slot 13031  df-base 13033  df-plusg 13118  df-0g 13286  df-igsum 13287  df-mgm 13384
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator