ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsummgmpropd Unicode version

Theorem gsummgmpropd 13341
Description: A stronger version of gsumpropd 13339 if at least one of the involved structures is a magma, see gsumpropd2 13340. (Contributed by AV, 31-Jan-2020.)
Hypotheses
Ref Expression
gsummgmpropd.f  |-  ( ph  ->  F  e.  V )
gsummgmpropd.g  |-  ( ph  ->  G  e.  W )
gsummgmpropd.h  |-  ( ph  ->  H  e.  X )
gsummgmpropd.b  |-  ( ph  ->  ( Base `  G
)  =  ( Base `  H ) )
gsummgmpropd.m  |-  ( ph  ->  G  e. Mgm )
gsummgmpropd.e  |-  ( (
ph  /\  ( s  e.  ( Base `  G
)  /\  t  e.  ( Base `  G )
) )  ->  (
s ( +g  `  G
) t )  =  ( s ( +g  `  H ) t ) )
gsummgmpropd.n  |-  ( ph  ->  Fun  F )
gsummgmpropd.r  |-  ( ph  ->  ran  F  C_  ( Base `  G ) )
Assertion
Ref Expression
gsummgmpropd  |-  ( ph  ->  ( G  gsumg  F )  =  ( H  gsumg  F ) )
Distinct variable groups:    F, s, t    G, s, t    H, s, t    ph, s, t
Allowed substitution hints:    V( t, s)    W( t, s)    X( t, s)

Proof of Theorem gsummgmpropd
StepHypRef Expression
1 gsummgmpropd.f . 2  |-  ( ph  ->  F  e.  V )
2 gsummgmpropd.g . 2  |-  ( ph  ->  G  e.  W )
3 gsummgmpropd.h . 2  |-  ( ph  ->  H  e.  X )
4 gsummgmpropd.b . 2  |-  ( ph  ->  ( Base `  G
)  =  ( Base `  H ) )
5 gsummgmpropd.m . . . 4  |-  ( ph  ->  G  e. Mgm )
6 eqid 2207 . . . . . 6  |-  ( Base `  G )  =  (
Base `  G )
7 eqid 2207 . . . . . 6  |-  ( +g  `  G )  =  ( +g  `  G )
86, 7mgmcl 13306 . . . . 5  |-  ( ( G  e. Mgm  /\  s  e.  ( Base `  G
)  /\  t  e.  ( Base `  G )
)  ->  ( s
( +g  `  G ) t )  e.  (
Base `  G )
)
983expib 1209 . . . 4  |-  ( G  e. Mgm  ->  ( ( s  e.  ( Base `  G
)  /\  t  e.  ( Base `  G )
)  ->  ( s
( +g  `  G ) t )  e.  (
Base `  G )
) )
105, 9syl 14 . . 3  |-  ( ph  ->  ( ( s  e.  ( Base `  G
)  /\  t  e.  ( Base `  G )
)  ->  ( s
( +g  `  G ) t )  e.  (
Base `  G )
) )
1110imp 124 . 2  |-  ( (
ph  /\  ( s  e.  ( Base `  G
)  /\  t  e.  ( Base `  G )
) )  ->  (
s ( +g  `  G
) t )  e.  ( Base `  G
) )
12 gsummgmpropd.e . 2  |-  ( (
ph  /\  ( s  e.  ( Base `  G
)  /\  t  e.  ( Base `  G )
) )  ->  (
s ( +g  `  G
) t )  =  ( s ( +g  `  H ) t ) )
13 gsummgmpropd.n . 2  |-  ( ph  ->  Fun  F )
14 gsummgmpropd.r . 2  |-  ( ph  ->  ran  F  C_  ( Base `  G ) )
151, 2, 3, 4, 11, 12, 13, 14gsumpropd2 13340 1  |-  ( ph  ->  ( G  gsumg  F )  =  ( H  gsumg  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178    C_ wss 3174   ran crn 4694   Fun wfun 5284   ` cfv 5290  (class class class)co 5967   Basecbs 12947   +g cplusg 13024    gsumg cgsu 13204  Mgmcmgm 13301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-2 9130  df-n0 9331  df-z 9408  df-uz 9684  df-fz 10166  df-fzo 10300  df-seqfrec 10630  df-ndx 12950  df-slot 12951  df-base 12953  df-plusg 13037  df-0g 13205  df-igsum 13206  df-mgm 13303
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator