ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsummgmpropd Unicode version

Theorem gsummgmpropd 13096
Description: A stronger version of gsumpropd 13094 if at least one of the involved structures is a magma, see gsumpropd2 13095. (Contributed by AV, 31-Jan-2020.)
Hypotheses
Ref Expression
gsummgmpropd.f  |-  ( ph  ->  F  e.  V )
gsummgmpropd.g  |-  ( ph  ->  G  e.  W )
gsummgmpropd.h  |-  ( ph  ->  H  e.  X )
gsummgmpropd.b  |-  ( ph  ->  ( Base `  G
)  =  ( Base `  H ) )
gsummgmpropd.m  |-  ( ph  ->  G  e. Mgm )
gsummgmpropd.e  |-  ( (
ph  /\  ( s  e.  ( Base `  G
)  /\  t  e.  ( Base `  G )
) )  ->  (
s ( +g  `  G
) t )  =  ( s ( +g  `  H ) t ) )
gsummgmpropd.n  |-  ( ph  ->  Fun  F )
gsummgmpropd.r  |-  ( ph  ->  ran  F  C_  ( Base `  G ) )
Assertion
Ref Expression
gsummgmpropd  |-  ( ph  ->  ( G  gsumg  F )  =  ( H  gsumg  F ) )
Distinct variable groups:    F, s, t    G, s, t    H, s, t    ph, s, t
Allowed substitution hints:    V( t, s)    W( t, s)    X( t, s)

Proof of Theorem gsummgmpropd
StepHypRef Expression
1 gsummgmpropd.f . 2  |-  ( ph  ->  F  e.  V )
2 gsummgmpropd.g . 2  |-  ( ph  ->  G  e.  W )
3 gsummgmpropd.h . 2  |-  ( ph  ->  H  e.  X )
4 gsummgmpropd.b . 2  |-  ( ph  ->  ( Base `  G
)  =  ( Base `  H ) )
5 gsummgmpropd.m . . . 4  |-  ( ph  ->  G  e. Mgm )
6 eqid 2196 . . . . . 6  |-  ( Base `  G )  =  (
Base `  G )
7 eqid 2196 . . . . . 6  |-  ( +g  `  G )  =  ( +g  `  G )
86, 7mgmcl 13061 . . . . 5  |-  ( ( G  e. Mgm  /\  s  e.  ( Base `  G
)  /\  t  e.  ( Base `  G )
)  ->  ( s
( +g  `  G ) t )  e.  (
Base `  G )
)
983expib 1208 . . . 4  |-  ( G  e. Mgm  ->  ( ( s  e.  ( Base `  G
)  /\  t  e.  ( Base `  G )
)  ->  ( s
( +g  `  G ) t )  e.  (
Base `  G )
) )
105, 9syl 14 . . 3  |-  ( ph  ->  ( ( s  e.  ( Base `  G
)  /\  t  e.  ( Base `  G )
)  ->  ( s
( +g  `  G ) t )  e.  (
Base `  G )
) )
1110imp 124 . 2  |-  ( (
ph  /\  ( s  e.  ( Base `  G
)  /\  t  e.  ( Base `  G )
) )  ->  (
s ( +g  `  G
) t )  e.  ( Base `  G
) )
12 gsummgmpropd.e . 2  |-  ( (
ph  /\  ( s  e.  ( Base `  G
)  /\  t  e.  ( Base `  G )
) )  ->  (
s ( +g  `  G
) t )  =  ( s ( +g  `  H ) t ) )
13 gsummgmpropd.n . 2  |-  ( ph  ->  Fun  F )
14 gsummgmpropd.r . 2  |-  ( ph  ->  ran  F  C_  ( Base `  G ) )
151, 2, 3, 4, 11, 12, 13, 14gsumpropd2 13095 1  |-  ( ph  ->  ( G  gsumg  F )  =  ( H  gsumg  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167    C_ wss 3157   ran crn 4665   Fun wfun 5253   ` cfv 5259  (class class class)co 5925   Basecbs 12703   +g cplusg 12780    gsumg cgsu 12959  Mgmcmgm 13056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-2 9066  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-0g 12960  df-igsum 12961  df-mgm 13058
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator