ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsummgmpropd GIF version

Theorem gsummgmpropd 13393
Description: A stronger version of gsumpropd 13391 if at least one of the involved structures is a magma, see gsumpropd2 13392. (Contributed by AV, 31-Jan-2020.)
Hypotheses
Ref Expression
gsummgmpropd.f (𝜑𝐹𝑉)
gsummgmpropd.g (𝜑𝐺𝑊)
gsummgmpropd.h (𝜑𝐻𝑋)
gsummgmpropd.b (𝜑 → (Base‘𝐺) = (Base‘𝐻))
gsummgmpropd.m (𝜑𝐺 ∈ Mgm)
gsummgmpropd.e ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) = (𝑠(+g𝐻)𝑡))
gsummgmpropd.n (𝜑 → Fun 𝐹)
gsummgmpropd.r (𝜑 → ran 𝐹 ⊆ (Base‘𝐺))
Assertion
Ref Expression
gsummgmpropd (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
Distinct variable groups:   𝐹,𝑠,𝑡   𝐺,𝑠,𝑡   𝐻,𝑠,𝑡   𝜑,𝑠,𝑡
Allowed substitution hints:   𝑉(𝑡,𝑠)   𝑊(𝑡,𝑠)   𝑋(𝑡,𝑠)

Proof of Theorem gsummgmpropd
StepHypRef Expression
1 gsummgmpropd.f . 2 (𝜑𝐹𝑉)
2 gsummgmpropd.g . 2 (𝜑𝐺𝑊)
3 gsummgmpropd.h . 2 (𝜑𝐻𝑋)
4 gsummgmpropd.b . 2 (𝜑 → (Base‘𝐺) = (Base‘𝐻))
5 gsummgmpropd.m . . . 4 (𝜑𝐺 ∈ Mgm)
6 eqid 2209 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
7 eqid 2209 . . . . . 6 (+g𝐺) = (+g𝐺)
86, 7mgmcl 13358 . . . . 5 ((𝐺 ∈ Mgm ∧ 𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺)) → (𝑠(+g𝐺)𝑡) ∈ (Base‘𝐺))
983expib 1211 . . . 4 (𝐺 ∈ Mgm → ((𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺)) → (𝑠(+g𝐺)𝑡) ∈ (Base‘𝐺)))
105, 9syl 14 . . 3 (𝜑 → ((𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺)) → (𝑠(+g𝐺)𝑡) ∈ (Base‘𝐺)))
1110imp 124 . 2 ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) ∈ (Base‘𝐺))
12 gsummgmpropd.e . 2 ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g𝐺)𝑡) = (𝑠(+g𝐻)𝑡))
13 gsummgmpropd.n . 2 (𝜑 → Fun 𝐹)
14 gsummgmpropd.r . 2 (𝜑 → ran 𝐹 ⊆ (Base‘𝐺))
151, 2, 3, 4, 11, 12, 13, 14gsumpropd2 13392 1 (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wcel 2180  wss 3177  ran crn 4697  Fun wfun 5288  cfv 5294  (class class class)co 5974  Basecbs 12998  +gcplusg 13076   Σg cgsu 13256  Mgmcmgm 13353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-0id 8075  ax-rnegex 8076  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-frec 6507  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-inn 9079  df-2 9137  df-n0 9338  df-z 9415  df-uz 9691  df-fz 10173  df-fzo 10307  df-seqfrec 10637  df-ndx 13001  df-slot 13002  df-base 13004  df-plusg 13089  df-0g 13257  df-igsum 13258  df-mgm 13355
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator