| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gsummgmpropd | GIF version | ||
| Description: A stronger version of gsumpropd 13268 if at least one of the involved structures is a magma, see gsumpropd2 13269. (Contributed by AV, 31-Jan-2020.) |
| Ref | Expression |
|---|---|
| gsummgmpropd.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| gsummgmpropd.g | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
| gsummgmpropd.h | ⊢ (𝜑 → 𝐻 ∈ 𝑋) |
| gsummgmpropd.b | ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) |
| gsummgmpropd.m | ⊢ (𝜑 → 𝐺 ∈ Mgm) |
| gsummgmpropd.e | ⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g‘𝐺)𝑡) = (𝑠(+g‘𝐻)𝑡)) |
| gsummgmpropd.n | ⊢ (𝜑 → Fun 𝐹) |
| gsummgmpropd.r | ⊢ (𝜑 → ran 𝐹 ⊆ (Base‘𝐺)) |
| Ref | Expression |
|---|---|
| gsummgmpropd | ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummgmpropd.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 2 | gsummgmpropd.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
| 3 | gsummgmpropd.h | . 2 ⊢ (𝜑 → 𝐻 ∈ 𝑋) | |
| 4 | gsummgmpropd.b | . 2 ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) | |
| 5 | gsummgmpropd.m | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Mgm) | |
| 6 | eqid 2206 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 7 | eqid 2206 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 8 | 6, 7 | mgmcl 13235 | . . . . 5 ⊢ ((𝐺 ∈ Mgm ∧ 𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺)) → (𝑠(+g‘𝐺)𝑡) ∈ (Base‘𝐺)) |
| 9 | 8 | 3expib 1209 | . . . 4 ⊢ (𝐺 ∈ Mgm → ((𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺)) → (𝑠(+g‘𝐺)𝑡) ∈ (Base‘𝐺))) |
| 10 | 5, 9 | syl 14 | . . 3 ⊢ (𝜑 → ((𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺)) → (𝑠(+g‘𝐺)𝑡) ∈ (Base‘𝐺))) |
| 11 | 10 | imp 124 | . 2 ⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g‘𝐺)𝑡) ∈ (Base‘𝐺)) |
| 12 | gsummgmpropd.e | . 2 ⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g‘𝐺)𝑡) = (𝑠(+g‘𝐻)𝑡)) | |
| 13 | gsummgmpropd.n | . 2 ⊢ (𝜑 → Fun 𝐹) | |
| 14 | gsummgmpropd.r | . 2 ⊢ (𝜑 → ran 𝐹 ⊆ (Base‘𝐺)) | |
| 15 | 1, 2, 3, 4, 11, 12, 13, 14 | gsumpropd2 13269 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ⊆ wss 3167 ran crn 4680 Fun wfun 5270 ‘cfv 5276 (class class class)co 5951 Basecbs 12876 +gcplusg 12953 Σg cgsu 13133 Mgmcmgm 13230 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-addass 8034 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-0id 8040 ax-rnegex 8041 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-ltadd 8048 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-frec 6484 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-inn 9044 df-2 9102 df-n0 9303 df-z 9380 df-uz 9656 df-fz 10138 df-fzo 10272 df-seqfrec 10600 df-ndx 12879 df-slot 12880 df-base 12882 df-plusg 12966 df-0g 13134 df-igsum 13135 df-mgm 13232 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |