| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > gsummgmpropd | GIF version | ||
| Description: A stronger version of gsumpropd 13433 if at least one of the involved structures is a magma, see gsumpropd2 13434. (Contributed by AV, 31-Jan-2020.) |
| Ref | Expression |
|---|---|
| gsummgmpropd.f | ⊢ (𝜑 → 𝐹 ∈ 𝑉) |
| gsummgmpropd.g | ⊢ (𝜑 → 𝐺 ∈ 𝑊) |
| gsummgmpropd.h | ⊢ (𝜑 → 𝐻 ∈ 𝑋) |
| gsummgmpropd.b | ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) |
| gsummgmpropd.m | ⊢ (𝜑 → 𝐺 ∈ Mgm) |
| gsummgmpropd.e | ⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g‘𝐺)𝑡) = (𝑠(+g‘𝐻)𝑡)) |
| gsummgmpropd.n | ⊢ (𝜑 → Fun 𝐹) |
| gsummgmpropd.r | ⊢ (𝜑 → ran 𝐹 ⊆ (Base‘𝐺)) |
| Ref | Expression |
|---|---|
| gsummgmpropd | ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummgmpropd.f | . 2 ⊢ (𝜑 → 𝐹 ∈ 𝑉) | |
| 2 | gsummgmpropd.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑊) | |
| 3 | gsummgmpropd.h | . 2 ⊢ (𝜑 → 𝐻 ∈ 𝑋) | |
| 4 | gsummgmpropd.b | . 2 ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) | |
| 5 | gsummgmpropd.m | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Mgm) | |
| 6 | eqid 2229 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 7 | eqid 2229 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 8 | 6, 7 | mgmcl 13400 | . . . . 5 ⊢ ((𝐺 ∈ Mgm ∧ 𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺)) → (𝑠(+g‘𝐺)𝑡) ∈ (Base‘𝐺)) |
| 9 | 8 | 3expib 1230 | . . . 4 ⊢ (𝐺 ∈ Mgm → ((𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺)) → (𝑠(+g‘𝐺)𝑡) ∈ (Base‘𝐺))) |
| 10 | 5, 9 | syl 14 | . . 3 ⊢ (𝜑 → ((𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺)) → (𝑠(+g‘𝐺)𝑡) ∈ (Base‘𝐺))) |
| 11 | 10 | imp 124 | . 2 ⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g‘𝐺)𝑡) ∈ (Base‘𝐺)) |
| 12 | gsummgmpropd.e | . 2 ⊢ ((𝜑 ∧ (𝑠 ∈ (Base‘𝐺) ∧ 𝑡 ∈ (Base‘𝐺))) → (𝑠(+g‘𝐺)𝑡) = (𝑠(+g‘𝐻)𝑡)) | |
| 13 | gsummgmpropd.n | . 2 ⊢ (𝜑 → Fun 𝐹) | |
| 14 | gsummgmpropd.r | . 2 ⊢ (𝜑 → ran 𝐹 ⊆ (Base‘𝐺)) | |
| 15 | 1, 2, 3, 4, 11, 12, 13, 14 | gsumpropd2 13434 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ⊆ wss 3197 ran crn 4720 Fun wfun 5312 ‘cfv 5318 (class class class)co 6007 Basecbs 13040 +gcplusg 13118 Σg cgsu 13298 Mgmcmgm 13395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-frec 6543 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-inn 9119 df-2 9177 df-n0 9378 df-z 9455 df-uz 9731 df-fz 10213 df-fzo 10347 df-seqfrec 10678 df-ndx 13043 df-slot 13044 df-base 13046 df-plusg 13131 df-0g 13299 df-igsum 13300 df-mgm 13397 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |