Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > hashunsng | Unicode version |
Description: The size of the union of a finite set with a disjoint singleton is one more than the size of the set. (Contributed by Paul Chapman, 30-Nov-2012.) |
Ref | Expression |
---|---|
hashunsng | ♯ ♯ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 519 | . . . 4 | |
2 | snfig 6760 | . . . . 5 | |
3 | 2 | adantl 275 | . . . 4 |
4 | simplr 520 | . . . . 5 | |
5 | disjsn 3622 | . . . . 5 | |
6 | 4, 5 | sylibr 133 | . . . 4 |
7 | hashun 10683 | . . . 4 ♯ ♯ ♯ | |
8 | 1, 3, 6, 7 | syl3anc 1220 | . . 3 ♯ ♯ ♯ |
9 | hashsng 10676 | . . . . 5 ♯ | |
10 | 9 | oveq2d 5841 | . . . 4 ♯ ♯ ♯ |
11 | 10 | adantl 275 | . . 3 ♯ ♯ ♯ |
12 | 8, 11 | eqtrd 2190 | . 2 ♯ ♯ |
13 | 12 | expcom 115 | 1 ♯ ♯ |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wceq 1335 wcel 2128 cun 3100 cin 3101 c0 3394 csn 3560 cfv 5171 (class class class)co 5825 cfn 6686 c1 7734 caddc 7736 ♯chash 10653 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4080 ax-sep 4083 ax-nul 4091 ax-pow 4136 ax-pr 4170 ax-un 4394 ax-setind 4497 ax-iinf 4548 ax-cnex 7824 ax-resscn 7825 ax-1cn 7826 ax-1re 7827 ax-icn 7828 ax-addcl 7829 ax-addrcl 7830 ax-mulcl 7831 ax-addcom 7833 ax-addass 7835 ax-distr 7837 ax-i2m1 7838 ax-0lt1 7839 ax-0id 7841 ax-rnegex 7842 ax-cnre 7844 ax-pre-ltirr 7845 ax-pre-ltwlin 7846 ax-pre-lttrn 7847 ax-pre-apti 7848 ax-pre-ltadd 7849 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3774 df-int 3809 df-iun 3852 df-br 3967 df-opab 4027 df-mpt 4028 df-tr 4064 df-id 4254 df-iord 4327 df-on 4329 df-ilim 4330 df-suc 4332 df-iom 4551 df-xp 4593 df-rel 4594 df-cnv 4595 df-co 4596 df-dm 4597 df-rn 4598 df-res 4599 df-ima 4600 df-iota 5136 df-fun 5173 df-fn 5174 df-f 5175 df-f1 5176 df-fo 5177 df-f1o 5178 df-fv 5179 df-riota 5781 df-ov 5828 df-oprab 5829 df-mpo 5830 df-1st 6089 df-2nd 6090 df-recs 6253 df-irdg 6318 df-frec 6339 df-1o 6364 df-oadd 6368 df-er 6481 df-en 6687 df-dom 6688 df-fin 6689 df-pnf 7915 df-mnf 7916 df-xr 7917 df-ltxr 7918 df-le 7919 df-sub 8049 df-neg 8050 df-inn 8835 df-n0 9092 df-z 9169 df-uz 9441 df-fz 9914 df-ihash 10654 |
This theorem is referenced by: hashprg 10686 hashp1i 10688 hashxp 10704 fprodconst 11521 |
Copyright terms: Public domain | W3C validator |