| Step | Hyp | Ref
 | Expression | 
| 1 |   | fnmap 6714 | 
. . . . 5
⊢ 
↑𝑚 Fn (V × V) | 
| 2 |   | basfn 12736 | 
. . . . . 6
⊢ Base Fn
V | 
| 3 |   | simpr 110 | 
. . . . . . 7
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝑇 ∈ Mnd) | 
| 4 | 3 | elexd 2776 | 
. . . . . 6
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝑇 ∈ V) | 
| 5 |   | funfvex 5575 | 
. . . . . . 7
⊢ ((Fun
Base ∧ 𝑇 ∈ dom
Base) → (Base‘𝑇)
∈ V) | 
| 6 | 5 | funfni 5358 | 
. . . . . 6
⊢ ((Base Fn
V ∧ 𝑇 ∈ V) →
(Base‘𝑇) ∈
V) | 
| 7 | 2, 4, 6 | sylancr 414 | 
. . . . 5
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) →
(Base‘𝑇) ∈
V) | 
| 8 |   | simpl 109 | 
. . . . . . 7
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝑆 ∈ Mnd) | 
| 9 | 8 | elexd 2776 | 
. . . . . 6
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝑆 ∈ V) | 
| 10 |   | funfvex 5575 | 
. . . . . . 7
⊢ ((Fun
Base ∧ 𝑆 ∈ dom
Base) → (Base‘𝑆)
∈ V) | 
| 11 | 10 | funfni 5358 | 
. . . . . 6
⊢ ((Base Fn
V ∧ 𝑆 ∈ V) →
(Base‘𝑆) ∈
V) | 
| 12 | 2, 9, 11 | sylancr 414 | 
. . . . 5
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) →
(Base‘𝑆) ∈
V) | 
| 13 |   | fnovex 5955 | 
. . . . 5
⊢ ((
↑𝑚 Fn (V × V) ∧ (Base‘𝑇) ∈ V ∧ (Base‘𝑆) ∈ V) →
((Base‘𝑇)
↑𝑚 (Base‘𝑆)) ∈ V) | 
| 14 | 1, 7, 12, 13 | mp3an2i 1353 | 
. . . 4
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) →
((Base‘𝑇)
↑𝑚 (Base‘𝑆)) ∈ V) | 
| 15 |   | rabexg 4176 | 
. . . 4
⊢
(((Base‘𝑇)
↑𝑚 (Base‘𝑆)) ∈ V → {𝑓 ∈ ((Base‘𝑇) ↑𝑚
(Base‘𝑆)) ∣
(∀𝑥 ∈
(Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g‘𝑆)𝑦)) = ((𝑓‘𝑥)(+g‘𝑇)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝑆)) = (0g‘𝑇))} ∈ V) | 
| 16 | 14, 15 | syl 14 | 
. . 3
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → {𝑓 ∈ ((Base‘𝑇) ↑𝑚
(Base‘𝑆)) ∣
(∀𝑥 ∈
(Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g‘𝑆)𝑦)) = ((𝑓‘𝑥)(+g‘𝑇)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝑆)) = (0g‘𝑇))} ∈ V) | 
| 17 |   | fveq2 5558 | 
. . . . . 6
⊢ (𝑠 = 𝑆 → (Base‘𝑠) = (Base‘𝑆)) | 
| 18 | 17 | oveq2d 5938 | 
. . . . 5
⊢ (𝑠 = 𝑆 → ((Base‘𝑡) ↑𝑚
(Base‘𝑠)) =
((Base‘𝑡)
↑𝑚 (Base‘𝑆))) | 
| 19 |   | fveq2 5558 | 
. . . . . . . . . 10
⊢ (𝑠 = 𝑆 → (+g‘𝑠) = (+g‘𝑆)) | 
| 20 | 19 | oveqd 5939 | 
. . . . . . . . 9
⊢ (𝑠 = 𝑆 → (𝑥(+g‘𝑠)𝑦) = (𝑥(+g‘𝑆)𝑦)) | 
| 21 | 20 | fveqeq2d 5566 | 
. . . . . . . 8
⊢ (𝑠 = 𝑆 → ((𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) ↔ (𝑓‘(𝑥(+g‘𝑆)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)))) | 
| 22 | 17, 21 | raleqbidv 2709 | 
. . . . . . 7
⊢ (𝑠 = 𝑆 → (∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) ↔ ∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g‘𝑆)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)))) | 
| 23 | 17, 22 | raleqbidv 2709 | 
. . . . . 6
⊢ (𝑠 = 𝑆 → (∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) ↔ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g‘𝑆)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)))) | 
| 24 |   | fveq2 5558 | 
. . . . . . 7
⊢ (𝑠 = 𝑆 → (0g‘𝑠) = (0g‘𝑆)) | 
| 25 | 24 | fveqeq2d 5566 | 
. . . . . 6
⊢ (𝑠 = 𝑆 → ((𝑓‘(0g‘𝑠)) = (0g‘𝑡) ↔ (𝑓‘(0g‘𝑆)) = (0g‘𝑡))) | 
| 26 | 23, 25 | anbi12d 473 | 
. . . . 5
⊢ (𝑠 = 𝑆 → ((∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝑠)) = (0g‘𝑡)) ↔ (∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g‘𝑆)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝑆)) = (0g‘𝑡)))) | 
| 27 | 18, 26 | rabeqbidv 2758 | 
. . . 4
⊢ (𝑠 = 𝑆 → {𝑓 ∈ ((Base‘𝑡) ↑𝑚
(Base‘𝑠)) ∣
(∀𝑥 ∈
(Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝑠)) = (0g‘𝑡))} = {𝑓 ∈ ((Base‘𝑡) ↑𝑚
(Base‘𝑆)) ∣
(∀𝑥 ∈
(Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g‘𝑆)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝑆)) = (0g‘𝑡))}) | 
| 28 |   | fveq2 5558 | 
. . . . . 6
⊢ (𝑡 = 𝑇 → (Base‘𝑡) = (Base‘𝑇)) | 
| 29 | 28 | oveq1d 5937 | 
. . . . 5
⊢ (𝑡 = 𝑇 → ((Base‘𝑡) ↑𝑚
(Base‘𝑆)) =
((Base‘𝑇)
↑𝑚 (Base‘𝑆))) | 
| 30 |   | fveq2 5558 | 
. . . . . . . . 9
⊢ (𝑡 = 𝑇 → (+g‘𝑡) = (+g‘𝑇)) | 
| 31 | 30 | oveqd 5939 | 
. . . . . . . 8
⊢ (𝑡 = 𝑇 → ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) = ((𝑓‘𝑥)(+g‘𝑇)(𝑓‘𝑦))) | 
| 32 | 31 | eqeq2d 2208 | 
. . . . . . 7
⊢ (𝑡 = 𝑇 → ((𝑓‘(𝑥(+g‘𝑆)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) ↔ (𝑓‘(𝑥(+g‘𝑆)𝑦)) = ((𝑓‘𝑥)(+g‘𝑇)(𝑓‘𝑦)))) | 
| 33 | 32 | 2ralbidv 2521 | 
. . . . . 6
⊢ (𝑡 = 𝑇 → (∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g‘𝑆)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) ↔ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g‘𝑆)𝑦)) = ((𝑓‘𝑥)(+g‘𝑇)(𝑓‘𝑦)))) | 
| 34 |   | fveq2 5558 | 
. . . . . . 7
⊢ (𝑡 = 𝑇 → (0g‘𝑡) = (0g‘𝑇)) | 
| 35 | 34 | eqeq2d 2208 | 
. . . . . 6
⊢ (𝑡 = 𝑇 → ((𝑓‘(0g‘𝑆)) = (0g‘𝑡) ↔ (𝑓‘(0g‘𝑆)) = (0g‘𝑇))) | 
| 36 | 33, 35 | anbi12d 473 | 
. . . . 5
⊢ (𝑡 = 𝑇 → ((∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g‘𝑆)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝑆)) = (0g‘𝑡)) ↔ (∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g‘𝑆)𝑦)) = ((𝑓‘𝑥)(+g‘𝑇)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝑆)) = (0g‘𝑇)))) | 
| 37 | 29, 36 | rabeqbidv 2758 | 
. . . 4
⊢ (𝑡 = 𝑇 → {𝑓 ∈ ((Base‘𝑡) ↑𝑚
(Base‘𝑆)) ∣
(∀𝑥 ∈
(Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g‘𝑆)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝑆)) = (0g‘𝑡))} = {𝑓 ∈ ((Base‘𝑇) ↑𝑚
(Base‘𝑆)) ∣
(∀𝑥 ∈
(Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g‘𝑆)𝑦)) = ((𝑓‘𝑥)(+g‘𝑇)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝑆)) = (0g‘𝑇))}) | 
| 38 |   | df-mhm 13091 | 
. . . 4
⊢  MndHom =
(𝑠 ∈ Mnd, 𝑡 ∈ Mnd ↦ {𝑓 ∈ ((Base‘𝑡) ↑𝑚
(Base‘𝑠)) ∣
(∀𝑥 ∈
(Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝑠)) = (0g‘𝑡))}) | 
| 39 | 27, 37, 38 | ovmpog 6057 | 
. . 3
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ {𝑓 ∈ ((Base‘𝑇) ↑𝑚
(Base‘𝑆)) ∣
(∀𝑥 ∈
(Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g‘𝑆)𝑦)) = ((𝑓‘𝑥)(+g‘𝑇)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝑆)) = (0g‘𝑇))} ∈ V) → (𝑆 MndHom 𝑇) = {𝑓 ∈ ((Base‘𝑇) ↑𝑚
(Base‘𝑆)) ∣
(∀𝑥 ∈
(Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g‘𝑆)𝑦)) = ((𝑓‘𝑥)(+g‘𝑇)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝑆)) = (0g‘𝑇))}) | 
| 40 | 16, 39 | mpd3an3 1349 | 
. 2
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝑆 MndHom 𝑇) = {𝑓 ∈ ((Base‘𝑇) ↑𝑚
(Base‘𝑆)) ∣
(∀𝑥 ∈
(Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g‘𝑆)𝑦)) = ((𝑓‘𝑥)(+g‘𝑇)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝑆)) = (0g‘𝑇))}) | 
| 41 | 40, 16 | eqeltrd 2273 | 
1
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝑆 MndHom 𝑇) ∈ V) |