ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mhmex GIF version

Theorem mhmex 13094
Description: The set of monoid homomorphisms exists. (Contributed by Jim Kingdon, 15-May-2025.)
Assertion
Ref Expression
mhmex ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝑆 MndHom 𝑇) ∈ V)

Proof of Theorem mhmex
Dummy variables 𝑓 𝑠 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnmap 6714 . . . . 5 𝑚 Fn (V × V)
2 basfn 12736 . . . . . 6 Base Fn V
3 simpr 110 . . . . . . 7 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝑇 ∈ Mnd)
43elexd 2776 . . . . . 6 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝑇 ∈ V)
5 funfvex 5575 . . . . . . 7 ((Fun Base ∧ 𝑇 ∈ dom Base) → (Base‘𝑇) ∈ V)
65funfni 5358 . . . . . 6 ((Base Fn V ∧ 𝑇 ∈ V) → (Base‘𝑇) ∈ V)
72, 4, 6sylancr 414 . . . . 5 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (Base‘𝑇) ∈ V)
8 simpl 109 . . . . . . 7 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝑆 ∈ Mnd)
98elexd 2776 . . . . . 6 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝑆 ∈ V)
10 funfvex 5575 . . . . . . 7 ((Fun Base ∧ 𝑆 ∈ dom Base) → (Base‘𝑆) ∈ V)
1110funfni 5358 . . . . . 6 ((Base Fn V ∧ 𝑆 ∈ V) → (Base‘𝑆) ∈ V)
122, 9, 11sylancr 414 . . . . 5 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (Base‘𝑆) ∈ V)
13 fnovex 5955 . . . . 5 (( ↑𝑚 Fn (V × V) ∧ (Base‘𝑇) ∈ V ∧ (Base‘𝑆) ∈ V) → ((Base‘𝑇) ↑𝑚 (Base‘𝑆)) ∈ V)
141, 7, 12, 13mp3an2i 1353 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → ((Base‘𝑇) ↑𝑚 (Base‘𝑆)) ∈ V)
15 rabexg 4176 . . . 4 (((Base‘𝑇) ↑𝑚 (Base‘𝑆)) ∈ V → {𝑓 ∈ ((Base‘𝑇) ↑𝑚 (Base‘𝑆)) ∣ (∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g𝑆)𝑦)) = ((𝑓𝑥)(+g𝑇)(𝑓𝑦)) ∧ (𝑓‘(0g𝑆)) = (0g𝑇))} ∈ V)
1614, 15syl 14 . . 3 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → {𝑓 ∈ ((Base‘𝑇) ↑𝑚 (Base‘𝑆)) ∣ (∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g𝑆)𝑦)) = ((𝑓𝑥)(+g𝑇)(𝑓𝑦)) ∧ (𝑓‘(0g𝑆)) = (0g𝑇))} ∈ V)
17 fveq2 5558 . . . . . 6 (𝑠 = 𝑆 → (Base‘𝑠) = (Base‘𝑆))
1817oveq2d 5938 . . . . 5 (𝑠 = 𝑆 → ((Base‘𝑡) ↑𝑚 (Base‘𝑠)) = ((Base‘𝑡) ↑𝑚 (Base‘𝑆)))
19 fveq2 5558 . . . . . . . . . 10 (𝑠 = 𝑆 → (+g𝑠) = (+g𝑆))
2019oveqd 5939 . . . . . . . . 9 (𝑠 = 𝑆 → (𝑥(+g𝑠)𝑦) = (𝑥(+g𝑆)𝑦))
2120fveqeq2d 5566 . . . . . . . 8 (𝑠 = 𝑆 → ((𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ↔ (𝑓‘(𝑥(+g𝑆)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦))))
2217, 21raleqbidv 2709 . . . . . . 7 (𝑠 = 𝑆 → (∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ↔ ∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g𝑆)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦))))
2317, 22raleqbidv 2709 . . . . . 6 (𝑠 = 𝑆 → (∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ↔ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g𝑆)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦))))
24 fveq2 5558 . . . . . . 7 (𝑠 = 𝑆 → (0g𝑠) = (0g𝑆))
2524fveqeq2d 5566 . . . . . 6 (𝑠 = 𝑆 → ((𝑓‘(0g𝑠)) = (0g𝑡) ↔ (𝑓‘(0g𝑆)) = (0g𝑡)))
2623, 25anbi12d 473 . . . . 5 (𝑠 = 𝑆 → ((∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ∧ (𝑓‘(0g𝑠)) = (0g𝑡)) ↔ (∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g𝑆)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ∧ (𝑓‘(0g𝑆)) = (0g𝑡))))
2718, 26rabeqbidv 2758 . . . 4 (𝑠 = 𝑆 → {𝑓 ∈ ((Base‘𝑡) ↑𝑚 (Base‘𝑠)) ∣ (∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ∧ (𝑓‘(0g𝑠)) = (0g𝑡))} = {𝑓 ∈ ((Base‘𝑡) ↑𝑚 (Base‘𝑆)) ∣ (∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g𝑆)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ∧ (𝑓‘(0g𝑆)) = (0g𝑡))})
28 fveq2 5558 . . . . . 6 (𝑡 = 𝑇 → (Base‘𝑡) = (Base‘𝑇))
2928oveq1d 5937 . . . . 5 (𝑡 = 𝑇 → ((Base‘𝑡) ↑𝑚 (Base‘𝑆)) = ((Base‘𝑇) ↑𝑚 (Base‘𝑆)))
30 fveq2 5558 . . . . . . . . 9 (𝑡 = 𝑇 → (+g𝑡) = (+g𝑇))
3130oveqd 5939 . . . . . . . 8 (𝑡 = 𝑇 → ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) = ((𝑓𝑥)(+g𝑇)(𝑓𝑦)))
3231eqeq2d 2208 . . . . . . 7 (𝑡 = 𝑇 → ((𝑓‘(𝑥(+g𝑆)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ↔ (𝑓‘(𝑥(+g𝑆)𝑦)) = ((𝑓𝑥)(+g𝑇)(𝑓𝑦))))
33322ralbidv 2521 . . . . . 6 (𝑡 = 𝑇 → (∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g𝑆)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ↔ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g𝑆)𝑦)) = ((𝑓𝑥)(+g𝑇)(𝑓𝑦))))
34 fveq2 5558 . . . . . . 7 (𝑡 = 𝑇 → (0g𝑡) = (0g𝑇))
3534eqeq2d 2208 . . . . . 6 (𝑡 = 𝑇 → ((𝑓‘(0g𝑆)) = (0g𝑡) ↔ (𝑓‘(0g𝑆)) = (0g𝑇)))
3633, 35anbi12d 473 . . . . 5 (𝑡 = 𝑇 → ((∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g𝑆)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ∧ (𝑓‘(0g𝑆)) = (0g𝑡)) ↔ (∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g𝑆)𝑦)) = ((𝑓𝑥)(+g𝑇)(𝑓𝑦)) ∧ (𝑓‘(0g𝑆)) = (0g𝑇))))
3729, 36rabeqbidv 2758 . . . 4 (𝑡 = 𝑇 → {𝑓 ∈ ((Base‘𝑡) ↑𝑚 (Base‘𝑆)) ∣ (∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g𝑆)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ∧ (𝑓‘(0g𝑆)) = (0g𝑡))} = {𝑓 ∈ ((Base‘𝑇) ↑𝑚 (Base‘𝑆)) ∣ (∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g𝑆)𝑦)) = ((𝑓𝑥)(+g𝑇)(𝑓𝑦)) ∧ (𝑓‘(0g𝑆)) = (0g𝑇))})
38 df-mhm 13091 . . . 4 MndHom = (𝑠 ∈ Mnd, 𝑡 ∈ Mnd ↦ {𝑓 ∈ ((Base‘𝑡) ↑𝑚 (Base‘𝑠)) ∣ (∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ∧ (𝑓‘(0g𝑠)) = (0g𝑡))})
3927, 37, 38ovmpog 6057 . . 3 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ {𝑓 ∈ ((Base‘𝑇) ↑𝑚 (Base‘𝑆)) ∣ (∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g𝑆)𝑦)) = ((𝑓𝑥)(+g𝑇)(𝑓𝑦)) ∧ (𝑓‘(0g𝑆)) = (0g𝑇))} ∈ V) → (𝑆 MndHom 𝑇) = {𝑓 ∈ ((Base‘𝑇) ↑𝑚 (Base‘𝑆)) ∣ (∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g𝑆)𝑦)) = ((𝑓𝑥)(+g𝑇)(𝑓𝑦)) ∧ (𝑓‘(0g𝑆)) = (0g𝑇))})
4016, 39mpd3an3 1349 . 2 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝑆 MndHom 𝑇) = {𝑓 ∈ ((Base‘𝑇) ↑𝑚 (Base‘𝑆)) ∣ (∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g𝑆)𝑦)) = ((𝑓𝑥)(+g𝑇)(𝑓𝑦)) ∧ (𝑓‘(0g𝑆)) = (0g𝑇))})
4140, 16eqeltrd 2273 1 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝑆 MndHom 𝑇) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wral 2475  {crab 2479  Vcvv 2763   × cxp 4661   Fn wfn 5253  cfv 5258  (class class class)co 5922  𝑚 cmap 6707  Basecbs 12678  +gcplusg 12755  0gc0g 12927  Mndcmnd 13057   MndHom cmhm 13089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-map 6709  df-inn 8991  df-ndx 12681  df-slot 12682  df-base 12684  df-mhm 13091
This theorem is referenced by:  ghmex  13385
  Copyright terms: Public domain W3C validator