Step | Hyp | Ref
| Expression |
1 | | fnmap 6682 |
. . . . 5
⊢
↑𝑚 Fn (V × V) |
2 | | basfn 12573 |
. . . . . 6
⊢ Base Fn
V |
3 | | simpr 110 |
. . . . . . 7
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝑇 ∈ Mnd) |
4 | 3 | elexd 2765 |
. . . . . 6
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝑇 ∈ V) |
5 | | funfvex 5551 |
. . . . . . 7
⊢ ((Fun
Base ∧ 𝑇 ∈ dom
Base) → (Base‘𝑇)
∈ V) |
6 | 5 | funfni 5335 |
. . . . . 6
⊢ ((Base Fn
V ∧ 𝑇 ∈ V) →
(Base‘𝑇) ∈
V) |
7 | 2, 4, 6 | sylancr 414 |
. . . . 5
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) →
(Base‘𝑇) ∈
V) |
8 | | simpl 109 |
. . . . . . 7
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝑆 ∈ Mnd) |
9 | 8 | elexd 2765 |
. . . . . 6
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝑆 ∈ V) |
10 | | funfvex 5551 |
. . . . . . 7
⊢ ((Fun
Base ∧ 𝑆 ∈ dom
Base) → (Base‘𝑆)
∈ V) |
11 | 10 | funfni 5335 |
. . . . . 6
⊢ ((Base Fn
V ∧ 𝑆 ∈ V) →
(Base‘𝑆) ∈
V) |
12 | 2, 9, 11 | sylancr 414 |
. . . . 5
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) →
(Base‘𝑆) ∈
V) |
13 | | fnovex 5930 |
. . . . 5
⊢ ((
↑𝑚 Fn (V × V) ∧ (Base‘𝑇) ∈ V ∧ (Base‘𝑆) ∈ V) →
((Base‘𝑇)
↑𝑚 (Base‘𝑆)) ∈ V) |
14 | 1, 7, 12, 13 | mp3an2i 1353 |
. . . 4
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) →
((Base‘𝑇)
↑𝑚 (Base‘𝑆)) ∈ V) |
15 | | rabexg 4161 |
. . . 4
⊢
(((Base‘𝑇)
↑𝑚 (Base‘𝑆)) ∈ V → {𝑓 ∈ ((Base‘𝑇) ↑𝑚
(Base‘𝑆)) ∣
(∀𝑥 ∈
(Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g‘𝑆)𝑦)) = ((𝑓‘𝑥)(+g‘𝑇)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝑆)) = (0g‘𝑇))} ∈ V) |
16 | 14, 15 | syl 14 |
. . 3
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → {𝑓 ∈ ((Base‘𝑇) ↑𝑚
(Base‘𝑆)) ∣
(∀𝑥 ∈
(Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g‘𝑆)𝑦)) = ((𝑓‘𝑥)(+g‘𝑇)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝑆)) = (0g‘𝑇))} ∈ V) |
17 | | fveq2 5534 |
. . . . . 6
⊢ (𝑠 = 𝑆 → (Base‘𝑠) = (Base‘𝑆)) |
18 | 17 | oveq2d 5913 |
. . . . 5
⊢ (𝑠 = 𝑆 → ((Base‘𝑡) ↑𝑚
(Base‘𝑠)) =
((Base‘𝑡)
↑𝑚 (Base‘𝑆))) |
19 | | fveq2 5534 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑆 → (+g‘𝑠) = (+g‘𝑆)) |
20 | 19 | oveqd 5914 |
. . . . . . . . 9
⊢ (𝑠 = 𝑆 → (𝑥(+g‘𝑠)𝑦) = (𝑥(+g‘𝑆)𝑦)) |
21 | 20 | fveqeq2d 5542 |
. . . . . . . 8
⊢ (𝑠 = 𝑆 → ((𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) ↔ (𝑓‘(𝑥(+g‘𝑆)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)))) |
22 | 17, 21 | raleqbidv 2698 |
. . . . . . 7
⊢ (𝑠 = 𝑆 → (∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) ↔ ∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g‘𝑆)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)))) |
23 | 17, 22 | raleqbidv 2698 |
. . . . . 6
⊢ (𝑠 = 𝑆 → (∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) ↔ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g‘𝑆)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)))) |
24 | | fveq2 5534 |
. . . . . . 7
⊢ (𝑠 = 𝑆 → (0g‘𝑠) = (0g‘𝑆)) |
25 | 24 | fveqeq2d 5542 |
. . . . . 6
⊢ (𝑠 = 𝑆 → ((𝑓‘(0g‘𝑠)) = (0g‘𝑡) ↔ (𝑓‘(0g‘𝑆)) = (0g‘𝑡))) |
26 | 23, 25 | anbi12d 473 |
. . . . 5
⊢ (𝑠 = 𝑆 → ((∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝑠)) = (0g‘𝑡)) ↔ (∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g‘𝑆)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝑆)) = (0g‘𝑡)))) |
27 | 18, 26 | rabeqbidv 2747 |
. . . 4
⊢ (𝑠 = 𝑆 → {𝑓 ∈ ((Base‘𝑡) ↑𝑚
(Base‘𝑠)) ∣
(∀𝑥 ∈
(Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝑠)) = (0g‘𝑡))} = {𝑓 ∈ ((Base‘𝑡) ↑𝑚
(Base‘𝑆)) ∣
(∀𝑥 ∈
(Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g‘𝑆)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝑆)) = (0g‘𝑡))}) |
28 | | fveq2 5534 |
. . . . . 6
⊢ (𝑡 = 𝑇 → (Base‘𝑡) = (Base‘𝑇)) |
29 | 28 | oveq1d 5912 |
. . . . 5
⊢ (𝑡 = 𝑇 → ((Base‘𝑡) ↑𝑚
(Base‘𝑆)) =
((Base‘𝑇)
↑𝑚 (Base‘𝑆))) |
30 | | fveq2 5534 |
. . . . . . . . 9
⊢ (𝑡 = 𝑇 → (+g‘𝑡) = (+g‘𝑇)) |
31 | 30 | oveqd 5914 |
. . . . . . . 8
⊢ (𝑡 = 𝑇 → ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) = ((𝑓‘𝑥)(+g‘𝑇)(𝑓‘𝑦))) |
32 | 31 | eqeq2d 2201 |
. . . . . . 7
⊢ (𝑡 = 𝑇 → ((𝑓‘(𝑥(+g‘𝑆)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) ↔ (𝑓‘(𝑥(+g‘𝑆)𝑦)) = ((𝑓‘𝑥)(+g‘𝑇)(𝑓‘𝑦)))) |
33 | 32 | 2ralbidv 2514 |
. . . . . 6
⊢ (𝑡 = 𝑇 → (∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g‘𝑆)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) ↔ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g‘𝑆)𝑦)) = ((𝑓‘𝑥)(+g‘𝑇)(𝑓‘𝑦)))) |
34 | | fveq2 5534 |
. . . . . . 7
⊢ (𝑡 = 𝑇 → (0g‘𝑡) = (0g‘𝑇)) |
35 | 34 | eqeq2d 2201 |
. . . . . 6
⊢ (𝑡 = 𝑇 → ((𝑓‘(0g‘𝑆)) = (0g‘𝑡) ↔ (𝑓‘(0g‘𝑆)) = (0g‘𝑇))) |
36 | 33, 35 | anbi12d 473 |
. . . . 5
⊢ (𝑡 = 𝑇 → ((∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g‘𝑆)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝑆)) = (0g‘𝑡)) ↔ (∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g‘𝑆)𝑦)) = ((𝑓‘𝑥)(+g‘𝑇)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝑆)) = (0g‘𝑇)))) |
37 | 29, 36 | rabeqbidv 2747 |
. . . 4
⊢ (𝑡 = 𝑇 → {𝑓 ∈ ((Base‘𝑡) ↑𝑚
(Base‘𝑆)) ∣
(∀𝑥 ∈
(Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g‘𝑆)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝑆)) = (0g‘𝑡))} = {𝑓 ∈ ((Base‘𝑇) ↑𝑚
(Base‘𝑆)) ∣
(∀𝑥 ∈
(Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g‘𝑆)𝑦)) = ((𝑓‘𝑥)(+g‘𝑇)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝑆)) = (0g‘𝑇))}) |
38 | | df-mhm 12926 |
. . . 4
⊢ MndHom =
(𝑠 ∈ Mnd, 𝑡 ∈ Mnd ↦ {𝑓 ∈ ((Base‘𝑡) ↑𝑚
(Base‘𝑠)) ∣
(∀𝑥 ∈
(Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g‘𝑠)𝑦)) = ((𝑓‘𝑥)(+g‘𝑡)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝑠)) = (0g‘𝑡))}) |
39 | 27, 37, 38 | ovmpog 6032 |
. . 3
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ {𝑓 ∈ ((Base‘𝑇) ↑𝑚
(Base‘𝑆)) ∣
(∀𝑥 ∈
(Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g‘𝑆)𝑦)) = ((𝑓‘𝑥)(+g‘𝑇)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝑆)) = (0g‘𝑇))} ∈ V) → (𝑆 MndHom 𝑇) = {𝑓 ∈ ((Base‘𝑇) ↑𝑚
(Base‘𝑆)) ∣
(∀𝑥 ∈
(Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g‘𝑆)𝑦)) = ((𝑓‘𝑥)(+g‘𝑇)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝑆)) = (0g‘𝑇))}) |
40 | 16, 39 | mpd3an3 1349 |
. 2
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝑆 MndHom 𝑇) = {𝑓 ∈ ((Base‘𝑇) ↑𝑚
(Base‘𝑆)) ∣
(∀𝑥 ∈
(Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g‘𝑆)𝑦)) = ((𝑓‘𝑥)(+g‘𝑇)(𝑓‘𝑦)) ∧ (𝑓‘(0g‘𝑆)) = (0g‘𝑇))}) |
41 | 40, 16 | eqeltrd 2266 |
1
⊢ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝑆 MndHom 𝑇) ∈ V) |