ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mhmex GIF version

Theorem mhmex 13344
Description: The set of monoid homomorphisms exists. (Contributed by Jim Kingdon, 15-May-2025.)
Assertion
Ref Expression
mhmex ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝑆 MndHom 𝑇) ∈ V)

Proof of Theorem mhmex
Dummy variables 𝑓 𝑠 𝑡 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fnmap 6752 . . . . 5 𝑚 Fn (V × V)
2 basfn 12940 . . . . . 6 Base Fn V
3 simpr 110 . . . . . . 7 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝑇 ∈ Mnd)
43elexd 2787 . . . . . 6 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝑇 ∈ V)
5 funfvex 5603 . . . . . . 7 ((Fun Base ∧ 𝑇 ∈ dom Base) → (Base‘𝑇) ∈ V)
65funfni 5382 . . . . . 6 ((Base Fn V ∧ 𝑇 ∈ V) → (Base‘𝑇) ∈ V)
72, 4, 6sylancr 414 . . . . 5 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (Base‘𝑇) ∈ V)
8 simpl 109 . . . . . . 7 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝑆 ∈ Mnd)
98elexd 2787 . . . . . 6 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝑆 ∈ V)
10 funfvex 5603 . . . . . . 7 ((Fun Base ∧ 𝑆 ∈ dom Base) → (Base‘𝑆) ∈ V)
1110funfni 5382 . . . . . 6 ((Base Fn V ∧ 𝑆 ∈ V) → (Base‘𝑆) ∈ V)
122, 9, 11sylancr 414 . . . . 5 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (Base‘𝑆) ∈ V)
13 fnovex 5987 . . . . 5 (( ↑𝑚 Fn (V × V) ∧ (Base‘𝑇) ∈ V ∧ (Base‘𝑆) ∈ V) → ((Base‘𝑇) ↑𝑚 (Base‘𝑆)) ∈ V)
141, 7, 12, 13mp3an2i 1355 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → ((Base‘𝑇) ↑𝑚 (Base‘𝑆)) ∈ V)
15 rabexg 4192 . . . 4 (((Base‘𝑇) ↑𝑚 (Base‘𝑆)) ∈ V → {𝑓 ∈ ((Base‘𝑇) ↑𝑚 (Base‘𝑆)) ∣ (∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g𝑆)𝑦)) = ((𝑓𝑥)(+g𝑇)(𝑓𝑦)) ∧ (𝑓‘(0g𝑆)) = (0g𝑇))} ∈ V)
1614, 15syl 14 . . 3 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → {𝑓 ∈ ((Base‘𝑇) ↑𝑚 (Base‘𝑆)) ∣ (∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g𝑆)𝑦)) = ((𝑓𝑥)(+g𝑇)(𝑓𝑦)) ∧ (𝑓‘(0g𝑆)) = (0g𝑇))} ∈ V)
17 fveq2 5586 . . . . . 6 (𝑠 = 𝑆 → (Base‘𝑠) = (Base‘𝑆))
1817oveq2d 5970 . . . . 5 (𝑠 = 𝑆 → ((Base‘𝑡) ↑𝑚 (Base‘𝑠)) = ((Base‘𝑡) ↑𝑚 (Base‘𝑆)))
19 fveq2 5586 . . . . . . . . . 10 (𝑠 = 𝑆 → (+g𝑠) = (+g𝑆))
2019oveqd 5971 . . . . . . . . 9 (𝑠 = 𝑆 → (𝑥(+g𝑠)𝑦) = (𝑥(+g𝑆)𝑦))
2120fveqeq2d 5594 . . . . . . . 8 (𝑠 = 𝑆 → ((𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ↔ (𝑓‘(𝑥(+g𝑆)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦))))
2217, 21raleqbidv 2719 . . . . . . 7 (𝑠 = 𝑆 → (∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ↔ ∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g𝑆)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦))))
2317, 22raleqbidv 2719 . . . . . 6 (𝑠 = 𝑆 → (∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ↔ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g𝑆)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦))))
24 fveq2 5586 . . . . . . 7 (𝑠 = 𝑆 → (0g𝑠) = (0g𝑆))
2524fveqeq2d 5594 . . . . . 6 (𝑠 = 𝑆 → ((𝑓‘(0g𝑠)) = (0g𝑡) ↔ (𝑓‘(0g𝑆)) = (0g𝑡)))
2623, 25anbi12d 473 . . . . 5 (𝑠 = 𝑆 → ((∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ∧ (𝑓‘(0g𝑠)) = (0g𝑡)) ↔ (∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g𝑆)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ∧ (𝑓‘(0g𝑆)) = (0g𝑡))))
2718, 26rabeqbidv 2768 . . . 4 (𝑠 = 𝑆 → {𝑓 ∈ ((Base‘𝑡) ↑𝑚 (Base‘𝑠)) ∣ (∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ∧ (𝑓‘(0g𝑠)) = (0g𝑡))} = {𝑓 ∈ ((Base‘𝑡) ↑𝑚 (Base‘𝑆)) ∣ (∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g𝑆)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ∧ (𝑓‘(0g𝑆)) = (0g𝑡))})
28 fveq2 5586 . . . . . 6 (𝑡 = 𝑇 → (Base‘𝑡) = (Base‘𝑇))
2928oveq1d 5969 . . . . 5 (𝑡 = 𝑇 → ((Base‘𝑡) ↑𝑚 (Base‘𝑆)) = ((Base‘𝑇) ↑𝑚 (Base‘𝑆)))
30 fveq2 5586 . . . . . . . . 9 (𝑡 = 𝑇 → (+g𝑡) = (+g𝑇))
3130oveqd 5971 . . . . . . . 8 (𝑡 = 𝑇 → ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) = ((𝑓𝑥)(+g𝑇)(𝑓𝑦)))
3231eqeq2d 2218 . . . . . . 7 (𝑡 = 𝑇 → ((𝑓‘(𝑥(+g𝑆)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ↔ (𝑓‘(𝑥(+g𝑆)𝑦)) = ((𝑓𝑥)(+g𝑇)(𝑓𝑦))))
33322ralbidv 2531 . . . . . 6 (𝑡 = 𝑇 → (∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g𝑆)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ↔ ∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g𝑆)𝑦)) = ((𝑓𝑥)(+g𝑇)(𝑓𝑦))))
34 fveq2 5586 . . . . . . 7 (𝑡 = 𝑇 → (0g𝑡) = (0g𝑇))
3534eqeq2d 2218 . . . . . 6 (𝑡 = 𝑇 → ((𝑓‘(0g𝑆)) = (0g𝑡) ↔ (𝑓‘(0g𝑆)) = (0g𝑇)))
3633, 35anbi12d 473 . . . . 5 (𝑡 = 𝑇 → ((∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g𝑆)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ∧ (𝑓‘(0g𝑆)) = (0g𝑡)) ↔ (∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g𝑆)𝑦)) = ((𝑓𝑥)(+g𝑇)(𝑓𝑦)) ∧ (𝑓‘(0g𝑆)) = (0g𝑇))))
3729, 36rabeqbidv 2768 . . . 4 (𝑡 = 𝑇 → {𝑓 ∈ ((Base‘𝑡) ↑𝑚 (Base‘𝑆)) ∣ (∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g𝑆)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ∧ (𝑓‘(0g𝑆)) = (0g𝑡))} = {𝑓 ∈ ((Base‘𝑇) ↑𝑚 (Base‘𝑆)) ∣ (∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g𝑆)𝑦)) = ((𝑓𝑥)(+g𝑇)(𝑓𝑦)) ∧ (𝑓‘(0g𝑆)) = (0g𝑇))})
38 df-mhm 13341 . . . 4 MndHom = (𝑠 ∈ Mnd, 𝑡 ∈ Mnd ↦ {𝑓 ∈ ((Base‘𝑡) ↑𝑚 (Base‘𝑠)) ∣ (∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ∧ (𝑓‘(0g𝑠)) = (0g𝑡))})
3927, 37, 38ovmpog 6090 . . 3 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ {𝑓 ∈ ((Base‘𝑇) ↑𝑚 (Base‘𝑆)) ∣ (∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g𝑆)𝑦)) = ((𝑓𝑥)(+g𝑇)(𝑓𝑦)) ∧ (𝑓‘(0g𝑆)) = (0g𝑇))} ∈ V) → (𝑆 MndHom 𝑇) = {𝑓 ∈ ((Base‘𝑇) ↑𝑚 (Base‘𝑆)) ∣ (∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g𝑆)𝑦)) = ((𝑓𝑥)(+g𝑇)(𝑓𝑦)) ∧ (𝑓‘(0g𝑆)) = (0g𝑇))})
4016, 39mpd3an3 1351 . 2 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝑆 MndHom 𝑇) = {𝑓 ∈ ((Base‘𝑇) ↑𝑚 (Base‘𝑆)) ∣ (∀𝑥 ∈ (Base‘𝑆)∀𝑦 ∈ (Base‘𝑆)(𝑓‘(𝑥(+g𝑆)𝑦)) = ((𝑓𝑥)(+g𝑇)(𝑓𝑦)) ∧ (𝑓‘(0g𝑆)) = (0g𝑇))})
4140, 16eqeltrd 2283 1 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝑆 MndHom 𝑇) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  wral 2485  {crab 2489  Vcvv 2773   × cxp 4678   Fn wfn 5272  cfv 5277  (class class class)co 5954  𝑚 cmap 6745  Basecbs 12882  +gcplusg 12959  0gc0g 13138  Mndcmnd 13298   MndHom cmhm 13339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-cnex 8029  ax-resscn 8030  ax-1re 8032  ax-addrcl 8035
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-fv 5285  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-map 6747  df-inn 9050  df-ndx 12885  df-slot 12886  df-base 12888  df-mhm 13341
This theorem is referenced by:  ghmex  13641
  Copyright terms: Public domain W3C validator