ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mul2lt0rlt0 GIF version

Theorem mul2lt0rlt0 9853
Description: If the result of a multiplication is strictly negative, then multiplicands are of different signs. (Contributed by Thierry Arnoux, 19-Sep-2018.)
Hypotheses
Ref Expression
mul2lt0.1 (𝜑𝐴 ∈ ℝ)
mul2lt0.2 (𝜑𝐵 ∈ ℝ)
mul2lt0.3 (𝜑 → (𝐴 · 𝐵) < 0)
Assertion
Ref Expression
mul2lt0rlt0 ((𝜑𝐵 < 0) → 0 < 𝐴)

Proof of Theorem mul2lt0rlt0
StepHypRef Expression
1 mul2lt0.1 . . . . . 6 (𝜑𝐴 ∈ ℝ)
2 mul2lt0.2 . . . . . 6 (𝜑𝐵 ∈ ℝ)
31, 2remulcld 8076 . . . . 5 (𝜑 → (𝐴 · 𝐵) ∈ ℝ)
43adantr 276 . . . 4 ((𝜑𝐵 < 0) → (𝐴 · 𝐵) ∈ ℝ)
5 0red 8046 . . . 4 ((𝜑𝐵 < 0) → 0 ∈ ℝ)
62adantr 276 . . . . 5 ((𝜑𝐵 < 0) → 𝐵 ∈ ℝ)
7 simpr 110 . . . . 5 ((𝜑𝐵 < 0) → 𝐵 < 0)
86, 7negelrpd 9782 . . . 4 ((𝜑𝐵 < 0) → -𝐵 ∈ ℝ+)
9 mul2lt0.3 . . . . 5 (𝜑 → (𝐴 · 𝐵) < 0)
109adantr 276 . . . 4 ((𝜑𝐵 < 0) → (𝐴 · 𝐵) < 0)
114, 5, 8, 10ltdiv1dd 9848 . . 3 ((𝜑𝐵 < 0) → ((𝐴 · 𝐵) / -𝐵) < (0 / -𝐵))
121recnd 8074 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
1312adantr 276 . . . . . 6 ((𝜑𝐵 < 0) → 𝐴 ∈ ℂ)
142recnd 8074 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
1514adantr 276 . . . . . 6 ((𝜑𝐵 < 0) → 𝐵 ∈ ℂ)
1613, 15mulcld 8066 . . . . 5 ((𝜑𝐵 < 0) → (𝐴 · 𝐵) ∈ ℂ)
176, 7lt0ap0d 8695 . . . . 5 ((𝜑𝐵 < 0) → 𝐵 # 0)
1816, 15, 17divneg2apd 8850 . . . 4 ((𝜑𝐵 < 0) → -((𝐴 · 𝐵) / 𝐵) = ((𝐴 · 𝐵) / -𝐵))
1913, 15, 17divcanap4d 8842 . . . . 5 ((𝜑𝐵 < 0) → ((𝐴 · 𝐵) / 𝐵) = 𝐴)
2019negeqd 8240 . . . 4 ((𝜑𝐵 < 0) → -((𝐴 · 𝐵) / 𝐵) = -𝐴)
2118, 20eqtr3d 2231 . . 3 ((𝜑𝐵 < 0) → ((𝐴 · 𝐵) / -𝐵) = -𝐴)
2215negcld 8343 . . . 4 ((𝜑𝐵 < 0) → -𝐵 ∈ ℂ)
2315, 17negap0d 8677 . . . 4 ((𝜑𝐵 < 0) → -𝐵 # 0)
2422, 23div0apd 8833 . . 3 ((𝜑𝐵 < 0) → (0 / -𝐵) = 0)
2511, 21, 243brtr3d 4065 . 2 ((𝜑𝐵 < 0) → -𝐴 < 0)
261adantr 276 . . 3 ((𝜑𝐵 < 0) → 𝐴 ∈ ℝ)
2726lt0neg2d 8562 . 2 ((𝜑𝐵 < 0) → (0 < 𝐴 ↔ -𝐴 < 0))
2825, 27mpbird 167 1 ((𝜑𝐵 < 0) → 0 < 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2167   class class class wbr 4034  (class class class)co 5925  cc 7896  cr 7897  0cc0 7898   · cmul 7903   < clt 8080  -cneg 8217   / cdiv 8718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-mulrcl 7997  ax-addcom 7998  ax-mulcom 7999  ax-addass 8000  ax-mulass 8001  ax-distr 8002  ax-i2m1 8003  ax-0lt1 8004  ax-1rid 8005  ax-0id 8006  ax-rnegex 8007  ax-precex 8008  ax-cnre 8009  ax-pre-ltirr 8010  ax-pre-ltwlin 8011  ax-pre-lttrn 8012  ax-pre-apti 8013  ax-pre-ltadd 8014  ax-pre-mulgt0 8015  ax-pre-mulext 8016
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8082  df-mnf 8083  df-xr 8084  df-ltxr 8085  df-le 8086  df-sub 8218  df-neg 8219  df-reap 8621  df-ap 8628  df-div 8719  df-rp 9748
This theorem is referenced by:  mul2lt0llt0  9855
  Copyright terms: Public domain W3C validator