| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mul2lt0rlt0 | GIF version | ||
| Description: If the result of a multiplication is strictly negative, then multiplicands are of different signs. (Contributed by Thierry Arnoux, 19-Sep-2018.) |
| Ref | Expression |
|---|---|
| mul2lt0.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| mul2lt0.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| mul2lt0.3 | ⊢ (𝜑 → (𝐴 · 𝐵) < 0) |
| Ref | Expression |
|---|---|
| mul2lt0rlt0 | ⊢ ((𝜑 ∧ 𝐵 < 0) → 0 < 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul2lt0.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | mul2lt0.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | 1, 2 | remulcld 8145 | . . . . 5 ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℝ) |
| 4 | 3 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 0) → (𝐴 · 𝐵) ∈ ℝ) |
| 5 | 0red 8115 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 0) → 0 ∈ ℝ) | |
| 6 | 2 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 < 0) → 𝐵 ∈ ℝ) |
| 7 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 < 0) → 𝐵 < 0) | |
| 8 | 6, 7 | negelrpd 9852 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 0) → -𝐵 ∈ ℝ+) |
| 9 | mul2lt0.3 | . . . . 5 ⊢ (𝜑 → (𝐴 · 𝐵) < 0) | |
| 10 | 9 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 0) → (𝐴 · 𝐵) < 0) |
| 11 | 4, 5, 8, 10 | ltdiv1dd 9918 | . . 3 ⊢ ((𝜑 ∧ 𝐵 < 0) → ((𝐴 · 𝐵) / -𝐵) < (0 / -𝐵)) |
| 12 | 1 | recnd 8143 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 13 | 12 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 < 0) → 𝐴 ∈ ℂ) |
| 14 | 2 | recnd 8143 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 15 | 14 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 < 0) → 𝐵 ∈ ℂ) |
| 16 | 13, 15 | mulcld 8135 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 < 0) → (𝐴 · 𝐵) ∈ ℂ) |
| 17 | 6, 7 | lt0ap0d 8764 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 < 0) → 𝐵 # 0) |
| 18 | 16, 15, 17 | divneg2apd 8919 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 0) → -((𝐴 · 𝐵) / 𝐵) = ((𝐴 · 𝐵) / -𝐵)) |
| 19 | 13, 15, 17 | divcanap4d 8911 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 < 0) → ((𝐴 · 𝐵) / 𝐵) = 𝐴) |
| 20 | 19 | negeqd 8309 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 0) → -((𝐴 · 𝐵) / 𝐵) = -𝐴) |
| 21 | 18, 20 | eqtr3d 2244 | . . 3 ⊢ ((𝜑 ∧ 𝐵 < 0) → ((𝐴 · 𝐵) / -𝐵) = -𝐴) |
| 22 | 15 | negcld 8412 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 0) → -𝐵 ∈ ℂ) |
| 23 | 15, 17 | negap0d 8746 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 0) → -𝐵 # 0) |
| 24 | 22, 23 | div0apd 8902 | . . 3 ⊢ ((𝜑 ∧ 𝐵 < 0) → (0 / -𝐵) = 0) |
| 25 | 11, 21, 24 | 3brtr3d 4093 | . 2 ⊢ ((𝜑 ∧ 𝐵 < 0) → -𝐴 < 0) |
| 26 | 1 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝐵 < 0) → 𝐴 ∈ ℝ) |
| 27 | 26 | lt0neg2d 8631 | . 2 ⊢ ((𝜑 ∧ 𝐵 < 0) → (0 < 𝐴 ↔ -𝐴 < 0)) |
| 28 | 25, 27 | mpbird 167 | 1 ⊢ ((𝜑 ∧ 𝐵 < 0) → 0 < 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2180 class class class wbr 4062 (class class class)co 5974 ℂcc 7965 ℝcr 7966 0cc0 7967 · cmul 7972 < clt 8149 -cneg 8286 / cdiv 8787 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-id 4361 df-po 4364 df-iso 4365 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-iota 5254 df-fun 5296 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-div 8788 df-rp 9818 |
| This theorem is referenced by: mul2lt0llt0 9925 |
| Copyright terms: Public domain | W3C validator |