ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mul2lt0rlt0 GIF version

Theorem mul2lt0rlt0 9828
Description: If the result of a multiplication is strictly negative, then multiplicands are of different signs. (Contributed by Thierry Arnoux, 19-Sep-2018.)
Hypotheses
Ref Expression
mul2lt0.1 (𝜑𝐴 ∈ ℝ)
mul2lt0.2 (𝜑𝐵 ∈ ℝ)
mul2lt0.3 (𝜑 → (𝐴 · 𝐵) < 0)
Assertion
Ref Expression
mul2lt0rlt0 ((𝜑𝐵 < 0) → 0 < 𝐴)

Proof of Theorem mul2lt0rlt0
StepHypRef Expression
1 mul2lt0.1 . . . . . 6 (𝜑𝐴 ∈ ℝ)
2 mul2lt0.2 . . . . . 6 (𝜑𝐵 ∈ ℝ)
31, 2remulcld 8052 . . . . 5 (𝜑 → (𝐴 · 𝐵) ∈ ℝ)
43adantr 276 . . . 4 ((𝜑𝐵 < 0) → (𝐴 · 𝐵) ∈ ℝ)
5 0red 8022 . . . 4 ((𝜑𝐵 < 0) → 0 ∈ ℝ)
62adantr 276 . . . . 5 ((𝜑𝐵 < 0) → 𝐵 ∈ ℝ)
7 simpr 110 . . . . 5 ((𝜑𝐵 < 0) → 𝐵 < 0)
86, 7negelrpd 9757 . . . 4 ((𝜑𝐵 < 0) → -𝐵 ∈ ℝ+)
9 mul2lt0.3 . . . . 5 (𝜑 → (𝐴 · 𝐵) < 0)
109adantr 276 . . . 4 ((𝜑𝐵 < 0) → (𝐴 · 𝐵) < 0)
114, 5, 8, 10ltdiv1dd 9823 . . 3 ((𝜑𝐵 < 0) → ((𝐴 · 𝐵) / -𝐵) < (0 / -𝐵))
121recnd 8050 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
1312adantr 276 . . . . . 6 ((𝜑𝐵 < 0) → 𝐴 ∈ ℂ)
142recnd 8050 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
1514adantr 276 . . . . . 6 ((𝜑𝐵 < 0) → 𝐵 ∈ ℂ)
1613, 15mulcld 8042 . . . . 5 ((𝜑𝐵 < 0) → (𝐴 · 𝐵) ∈ ℂ)
176, 7lt0ap0d 8670 . . . . 5 ((𝜑𝐵 < 0) → 𝐵 # 0)
1816, 15, 17divneg2apd 8825 . . . 4 ((𝜑𝐵 < 0) → -((𝐴 · 𝐵) / 𝐵) = ((𝐴 · 𝐵) / -𝐵))
1913, 15, 17divcanap4d 8817 . . . . 5 ((𝜑𝐵 < 0) → ((𝐴 · 𝐵) / 𝐵) = 𝐴)
2019negeqd 8216 . . . 4 ((𝜑𝐵 < 0) → -((𝐴 · 𝐵) / 𝐵) = -𝐴)
2118, 20eqtr3d 2228 . . 3 ((𝜑𝐵 < 0) → ((𝐴 · 𝐵) / -𝐵) = -𝐴)
2215negcld 8319 . . . 4 ((𝜑𝐵 < 0) → -𝐵 ∈ ℂ)
2315, 17negap0d 8652 . . . 4 ((𝜑𝐵 < 0) → -𝐵 # 0)
2422, 23div0apd 8808 . . 3 ((𝜑𝐵 < 0) → (0 / -𝐵) = 0)
2511, 21, 243brtr3d 4061 . 2 ((𝜑𝐵 < 0) → -𝐴 < 0)
261adantr 276 . . 3 ((𝜑𝐵 < 0) → 𝐴 ∈ ℝ)
2726lt0neg2d 8537 . 2 ((𝜑𝐵 < 0) → (0 < 𝐴 ↔ -𝐴 < 0))
2825, 27mpbird 167 1 ((𝜑𝐵 < 0) → 0 < 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2164   class class class wbr 4030  (class class class)co 5919  cc 7872  cr 7873  0cc0 7874   · cmul 7879   < clt 8056  -cneg 8193   / cdiv 8693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-po 4328  df-iso 4329  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-rp 9723
This theorem is referenced by:  mul2lt0llt0  9830
  Copyright terms: Public domain W3C validator