| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mul2lt0rlt0 | GIF version | ||
| Description: If the result of a multiplication is strictly negative, then multiplicands are of different signs. (Contributed by Thierry Arnoux, 19-Sep-2018.) | 
| Ref | Expression | 
|---|---|
| mul2lt0.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) | 
| mul2lt0.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) | 
| mul2lt0.3 | ⊢ (𝜑 → (𝐴 · 𝐵) < 0) | 
| Ref | Expression | 
|---|---|
| mul2lt0rlt0 | ⊢ ((𝜑 ∧ 𝐵 < 0) → 0 < 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mul2lt0.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | mul2lt0.2 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | 1, 2 | remulcld 8057 | . . . . 5 ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℝ) | 
| 4 | 3 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 0) → (𝐴 · 𝐵) ∈ ℝ) | 
| 5 | 0red 8027 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 0) → 0 ∈ ℝ) | |
| 6 | 2 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 < 0) → 𝐵 ∈ ℝ) | 
| 7 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 < 0) → 𝐵 < 0) | |
| 8 | 6, 7 | negelrpd 9763 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 0) → -𝐵 ∈ ℝ+) | 
| 9 | mul2lt0.3 | . . . . 5 ⊢ (𝜑 → (𝐴 · 𝐵) < 0) | |
| 10 | 9 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 0) → (𝐴 · 𝐵) < 0) | 
| 11 | 4, 5, 8, 10 | ltdiv1dd 9829 | . . 3 ⊢ ((𝜑 ∧ 𝐵 < 0) → ((𝐴 · 𝐵) / -𝐵) < (0 / -𝐵)) | 
| 12 | 1 | recnd 8055 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℂ) | 
| 13 | 12 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 < 0) → 𝐴 ∈ ℂ) | 
| 14 | 2 | recnd 8055 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℂ) | 
| 15 | 14 | adantr 276 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 < 0) → 𝐵 ∈ ℂ) | 
| 16 | 13, 15 | mulcld 8047 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 < 0) → (𝐴 · 𝐵) ∈ ℂ) | 
| 17 | 6, 7 | lt0ap0d 8676 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 < 0) → 𝐵 # 0) | 
| 18 | 16, 15, 17 | divneg2apd 8831 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 0) → -((𝐴 · 𝐵) / 𝐵) = ((𝐴 · 𝐵) / -𝐵)) | 
| 19 | 13, 15, 17 | divcanap4d 8823 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 < 0) → ((𝐴 · 𝐵) / 𝐵) = 𝐴) | 
| 20 | 19 | negeqd 8221 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 0) → -((𝐴 · 𝐵) / 𝐵) = -𝐴) | 
| 21 | 18, 20 | eqtr3d 2231 | . . 3 ⊢ ((𝜑 ∧ 𝐵 < 0) → ((𝐴 · 𝐵) / -𝐵) = -𝐴) | 
| 22 | 15 | negcld 8324 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 0) → -𝐵 ∈ ℂ) | 
| 23 | 15, 17 | negap0d 8658 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 0) → -𝐵 # 0) | 
| 24 | 22, 23 | div0apd 8814 | . . 3 ⊢ ((𝜑 ∧ 𝐵 < 0) → (0 / -𝐵) = 0) | 
| 25 | 11, 21, 24 | 3brtr3d 4064 | . 2 ⊢ ((𝜑 ∧ 𝐵 < 0) → -𝐴 < 0) | 
| 26 | 1 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝐵 < 0) → 𝐴 ∈ ℝ) | 
| 27 | 26 | lt0neg2d 8543 | . 2 ⊢ ((𝜑 ∧ 𝐵 < 0) → (0 < 𝐴 ↔ -𝐴 < 0)) | 
| 28 | 25, 27 | mpbird 167 | 1 ⊢ ((𝜑 ∧ 𝐵 < 0) → 0 < 𝐴) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 class class class wbr 4033 (class class class)co 5922 ℂcc 7877 ℝcr 7878 0cc0 7879 · cmul 7884 < clt 8061 -cneg 8198 / cdiv 8699 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-po 4331 df-iso 4332 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-rp 9729 | 
| This theorem is referenced by: mul2lt0llt0 9836 | 
| Copyright terms: Public domain | W3C validator |