| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > neg1z | GIF version | ||
| Description: -1 is an integer (common case). (Contributed by David A. Wheeler, 5-Dec-2018.) | 
| Ref | Expression | 
|---|---|
| neg1z | ⊢ -1 ∈ ℤ | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 1nn 9001 | . 2 ⊢ 1 ∈ ℕ | |
| 2 | nnnegz 9329 | . 2 ⊢ (1 ∈ ℕ → -1 ∈ ℤ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ -1 ∈ ℤ | 
| Colors of variables: wff set class | 
| Syntax hints: ∈ wcel 2167 1c1 7880 -cneg 8198 ℕcn 8990 ℤcz 9326 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-sub 8199 df-neg 8200 df-inn 8991 df-z 9327 | 
| This theorem is referenced by: modqnegd 10471 modsumfzodifsn 10488 xnn0nnen 10529 m1expcl 10654 n2dvdsm1 12078 bitsfzo 12119 pythagtriplem4 12437 cosq34lt1 15086 wilthlem1 15216 lgslem2 15242 lgsval 15245 lgsfvalg 15246 lgsfcl2 15247 lgsval2lem 15251 lgsvalmod 15260 lgsdir2lem3 15271 lgsdir2lem4 15272 lgsdir 15276 lgsdi 15278 lgsne0 15279 gausslemma2dlem5a 15306 gausslemma2dlem6 15308 gausslemma2dlem7 15309 gausslemma2d 15310 lgseisenlem2 15312 lgseisenlem4 15314 m1lgs 15326 apdiff 15692 | 
| Copyright terms: Public domain | W3C validator |