| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neg1z | GIF version | ||
| Description: -1 is an integer (common case). (Contributed by David A. Wheeler, 5-Dec-2018.) |
| Ref | Expression |
|---|---|
| neg1z | ⊢ -1 ∈ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 9018 | . 2 ⊢ 1 ∈ ℕ | |
| 2 | nnnegz 9346 | . 2 ⊢ (1 ∈ ℕ → -1 ∈ ℤ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ -1 ∈ ℤ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 1c1 7897 -cneg 8215 ℕcn 9007 ℤcz 9343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-sub 8216 df-neg 8217 df-inn 9008 df-z 9344 |
| This theorem is referenced by: modqnegd 10488 modsumfzodifsn 10505 xnn0nnen 10546 m1expcl 10671 n2dvdsm1 12095 bitsfzo 12137 pythagtriplem4 12462 cosq34lt1 15170 wilthlem1 15300 lgslem2 15326 lgsval 15329 lgsfvalg 15330 lgsfcl2 15331 lgsval2lem 15335 lgsvalmod 15344 lgsdir2lem3 15355 lgsdir2lem4 15356 lgsdir 15360 lgsdi 15362 lgsne0 15363 gausslemma2dlem5a 15390 gausslemma2dlem6 15392 gausslemma2dlem7 15393 gausslemma2d 15394 lgseisenlem2 15396 lgseisenlem4 15398 m1lgs 15410 apdiff 15779 |
| Copyright terms: Public domain | W3C validator |