| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neg1z | GIF version | ||
| Description: -1 is an integer (common case). (Contributed by David A. Wheeler, 5-Dec-2018.) |
| Ref | Expression |
|---|---|
| neg1z | ⊢ -1 ∈ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 9046 | . 2 ⊢ 1 ∈ ℕ | |
| 2 | nnnegz 9374 | . 2 ⊢ (1 ∈ ℕ → -1 ∈ ℤ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ -1 ∈ ℤ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2175 1c1 7925 -cneg 8243 ℕcn 9035 ℤcz 9371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-sub 8244 df-neg 8245 df-inn 9036 df-z 9372 |
| This theorem is referenced by: modqnegd 10522 modsumfzodifsn 10539 xnn0nnen 10580 m1expcl 10705 n2dvdsm1 12166 bitsfzo 12208 pythagtriplem4 12533 cosq34lt1 15264 wilthlem1 15394 lgslem2 15420 lgsval 15423 lgsfvalg 15424 lgsfcl2 15425 lgsval2lem 15429 lgsvalmod 15438 lgsdir2lem3 15449 lgsdir2lem4 15450 lgsdir 15454 lgsdi 15456 lgsne0 15457 gausslemma2dlem5a 15484 gausslemma2dlem6 15486 gausslemma2dlem7 15487 gausslemma2d 15488 lgseisenlem2 15490 lgseisenlem4 15492 m1lgs 15504 apdiff 15920 |
| Copyright terms: Public domain | W3C validator |