| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neg1z | GIF version | ||
| Description: -1 is an integer (common case). (Contributed by David A. Wheeler, 5-Dec-2018.) |
| Ref | Expression |
|---|---|
| neg1z | ⊢ -1 ∈ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn 9067 | . 2 ⊢ 1 ∈ ℕ | |
| 2 | nnnegz 9395 | . 2 ⊢ (1 ∈ ℕ → -1 ∈ ℤ) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ -1 ∈ ℤ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 1c1 7946 -cneg 8264 ℕcn 9056 ℤcz 9392 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-distr 8049 ax-i2m1 8050 ax-0id 8053 ax-rnegex 8054 ax-cnre 8056 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-iota 5241 df-fun 5282 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-sub 8265 df-neg 8266 df-inn 9057 df-z 9393 |
| This theorem is referenced by: modqnegd 10546 modsumfzodifsn 10563 xnn0nnen 10604 m1expcl 10729 n2dvdsm1 12299 bitsfzo 12341 pythagtriplem4 12666 cosq34lt1 15397 wilthlem1 15527 lgslem2 15553 lgsval 15556 lgsfvalg 15557 lgsfcl2 15558 lgsval2lem 15562 lgsvalmod 15571 lgsdir2lem3 15582 lgsdir2lem4 15583 lgsdir 15587 lgsdi 15589 lgsne0 15590 gausslemma2dlem5a 15617 gausslemma2dlem6 15619 gausslemma2dlem7 15620 gausslemma2d 15621 lgseisenlem2 15623 lgseisenlem4 15625 m1lgs 15637 apdiff 16128 |
| Copyright terms: Public domain | W3C validator |