| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > elfznn | Unicode version | ||
| Description: A member of a finite set of sequential integers starting at 1 is a positive integer. (Contributed by NM, 24-Aug-2005.) | 
| Ref | Expression | 
|---|---|
| elfznn | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elfzelz 10100 | 
. 2
 | |
| 2 | elfzle1 10102 | 
. 2
 | |
| 3 | elnnz1 9349 | 
. 2
 | |
| 4 | 1, 2, 3 | sylanbrc 417 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-z 9327 df-uz 9602 df-fz 10084 | 
| This theorem is referenced by: elfz1end 10130 fz1ssnn 10131 fzossnn 10265 nninfdcex 10327 bcm1k 10852 bcpasc 10858 seq3coll 10934 summodclem3 11545 summodclem2a 11546 fsum3 11552 isumz 11554 fsumcl2lem 11563 binomlem 11648 arisum2 11664 trireciplem 11665 geo2sum 11679 cvgratnnlemsumlt 11693 prodmodclem3 11740 prodmodclem2a 11741 fprodseq 11748 prod1dc 11751 fzm1ndvds 12021 nnmindc 12201 nnminle 12202 phicl 12383 eulerthlemrprm 12397 prmdivdiv 12405 dvdsfi 12407 odzcllem 12411 odzdvds 12414 modprm0 12423 pcfac 12519 pcbc 12520 1arith 12536 4sqlem13m 12572 4sqlem14 12573 4sqlem17 12576 4sqlem18 12577 mulgnngsum 13257 mulgnn0z 13279 mulgnndir 13281 dvply1 15001 wilthlem1 15216 lgsval2lem 15251 lgseisenlem1 15311 lgseisenlem2 15312 lgseisenlem3 15313 lgseisenlem4 15314 lgseisen 15315 lgsquadlemsfi 15316 lgsquadlem1 15318 lgsquadlem2 15319 lgsquadlem3 15320 2lgslem1a1 15327 cvgcmp2nlemabs 15676 trilpolemlt1 15685 nconstwlpolemgt0 15708 | 
| Copyright terms: Public domain | W3C validator |