| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfznn | Unicode version | ||
| Description: A member of a finite set of sequential integers starting at 1 is a positive integer. (Contributed by NM, 24-Aug-2005.) |
| Ref | Expression |
|---|---|
| elfznn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzelz 10182 |
. 2
| |
| 2 | elfzle1 10184 |
. 2
| |
| 3 | elnnz1 9430 |
. 2
| |
| 4 | 1, 2, 3 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-z 9408 df-uz 9684 df-fz 10166 |
| This theorem is referenced by: elfz1end 10212 fz1ssnn 10213 fzossnn 10350 nninfdcex 10417 bcm1k 10942 bcpasc 10948 seq3coll 11024 pfxfv0 11183 pfxfvlsw 11186 summodclem3 11806 summodclem2a 11807 fsum3 11813 isumz 11815 fsumcl2lem 11824 binomlem 11909 arisum2 11925 trireciplem 11926 geo2sum 11940 cvgratnnlemsumlt 11954 prodmodclem3 12001 prodmodclem2a 12002 fprodseq 12009 prod1dc 12012 fzm1ndvds 12282 nnmindc 12470 nnminle 12471 phicl 12652 eulerthlemrprm 12666 prmdivdiv 12674 dvdsfi 12676 odzcllem 12680 odzdvds 12683 modprm0 12692 pcfac 12788 pcbc 12789 1arith 12805 4sqlem13m 12841 4sqlem14 12842 4sqlem17 12845 4sqlem18 12846 mulgnngsum 13578 mulgnn0z 13600 mulgnndir 13602 dvply1 15352 wilthlem1 15567 lgsval2lem 15602 lgseisenlem1 15662 lgseisenlem2 15663 lgseisenlem3 15664 lgseisenlem4 15665 lgseisen 15666 lgsquadlemsfi 15667 lgsquadlem1 15669 lgsquadlem2 15670 lgsquadlem3 15671 2lgslem1a1 15678 cvgcmp2nlemabs 16173 trilpolemlt1 16182 nconstwlpolemgt0 16205 |
| Copyright terms: Public domain | W3C validator |