| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfznn | Unicode version | ||
| Description: A member of a finite set of sequential integers starting at 1 is a positive integer. (Contributed by NM, 24-Aug-2005.) |
| Ref | Expression |
|---|---|
| elfznn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzelz 10221 |
. 2
| |
| 2 | elfzle1 10223 |
. 2
| |
| 3 | elnnz1 9469 |
. 2
| |
| 4 | 1, 2, 3 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-z 9447 df-uz 9723 df-fz 10205 |
| This theorem is referenced by: elfz1end 10251 fz1ssnn 10252 fzossnn 10390 nninfdcex 10457 bcm1k 10982 bcpasc 10988 seq3coll 11064 pfxfv0 11224 pfxfvlsw 11227 summodclem3 11891 summodclem2a 11892 fsum3 11898 isumz 11900 fsumcl2lem 11909 binomlem 11994 arisum2 12010 trireciplem 12011 geo2sum 12025 cvgratnnlemsumlt 12039 prodmodclem3 12086 prodmodclem2a 12087 fprodseq 12094 prod1dc 12097 fzm1ndvds 12367 nnmindc 12555 nnminle 12556 phicl 12737 eulerthlemrprm 12751 prmdivdiv 12759 dvdsfi 12761 odzcllem 12765 odzdvds 12768 modprm0 12777 pcfac 12873 pcbc 12874 1arith 12890 4sqlem13m 12926 4sqlem14 12927 4sqlem17 12930 4sqlem18 12931 mulgnngsum 13664 mulgnn0z 13686 mulgnndir 13688 dvply1 15439 wilthlem1 15654 lgsval2lem 15689 lgseisenlem1 15749 lgseisenlem2 15750 lgseisenlem3 15751 lgseisenlem4 15752 lgseisen 15753 lgsquadlemsfi 15754 lgsquadlem1 15756 lgsquadlem2 15757 lgsquadlem3 15758 2lgslem1a1 15765 cvgcmp2nlemabs 16400 trilpolemlt1 16409 nconstwlpolemgt0 16432 |
| Copyright terms: Public domain | W3C validator |