| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfznn | Unicode version | ||
| Description: A member of a finite set of sequential integers starting at 1 is a positive integer. (Contributed by NM, 24-Aug-2005.) |
| Ref | Expression |
|---|---|
| elfznn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzelz 10149 |
. 2
| |
| 2 | elfzle1 10151 |
. 2
| |
| 3 | elnnz1 9397 |
. 2
| |
| 4 | 1, 2, 3 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-addcom 8027 ax-addass 8029 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-0id 8035 ax-rnegex 8036 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-ltadd 8043 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-opab 4107 df-mpt 4108 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-inn 9039 df-z 9375 df-uz 9651 df-fz 10133 |
| This theorem is referenced by: elfz1end 10179 fz1ssnn 10180 fzossnn 10315 nninfdcex 10382 bcm1k 10907 bcpasc 10913 seq3coll 10989 pfxfv0 11146 pfxfvlsw 11149 summodclem3 11724 summodclem2a 11725 fsum3 11731 isumz 11733 fsumcl2lem 11742 binomlem 11827 arisum2 11843 trireciplem 11844 geo2sum 11858 cvgratnnlemsumlt 11872 prodmodclem3 11919 prodmodclem2a 11920 fprodseq 11927 prod1dc 11930 fzm1ndvds 12200 nnmindc 12388 nnminle 12389 phicl 12570 eulerthlemrprm 12584 prmdivdiv 12592 dvdsfi 12594 odzcllem 12598 odzdvds 12601 modprm0 12610 pcfac 12706 pcbc 12707 1arith 12723 4sqlem13m 12759 4sqlem14 12760 4sqlem17 12763 4sqlem18 12764 mulgnngsum 13496 mulgnn0z 13518 mulgnndir 13520 dvply1 15270 wilthlem1 15485 lgsval2lem 15520 lgseisenlem1 15580 lgseisenlem2 15581 lgseisenlem3 15582 lgseisenlem4 15583 lgseisen 15584 lgsquadlemsfi 15585 lgsquadlem1 15587 lgsquadlem2 15588 lgsquadlem3 15589 2lgslem1a1 15596 cvgcmp2nlemabs 16008 trilpolemlt1 16017 nconstwlpolemgt0 16040 |
| Copyright terms: Public domain | W3C validator |