ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfinfwlpo Unicode version

Theorem nninfinfwlpo 7343
Description: The point at infinity in ℕ being isolated is equivalent to the Weak Limited Principle of Omniscience (WLPO). By isolated, we mean that the equality of that point with every other element of ℕ is decidable. From an online post by Martin Escardo. By contrast, elements of ℕ corresponding to natural numbers are isolated (nninfisol 7296). (Contributed by Jim Kingdon, 25-Nov-2025.)
Assertion
Ref Expression
nninfinfwlpo  |-  ( A. x  e. DECID  x  =  ( i  e. 
om  |->  1o )  <->  om  e. WOmni )
Distinct variable group:    x, i

Proof of Theorem nninfinfwlpo
Dummy variables  f  k  n  z  j  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapi 6815 . . . . . 6  |-  ( f  e.  ( 2o  ^m  om )  ->  f : om
--> 2o )
21adantl 277 . . . . 5  |-  ( ( A. x  e. DECID  x  =  ( i  e. 
om  |->  1o )  /\  f  e.  ( 2o  ^m 
om ) )  -> 
f : om --> 2o )
3 fveqeq2 5635 . . . . . . . . 9  |-  ( q  =  z  ->  (
( f `  q
)  =  (/)  <->  ( f `  z )  =  (/) ) )
43cbvrexv 2766 . . . . . . . 8  |-  ( E. q  e.  suc  j
( f `  q
)  =  (/)  <->  E. z  e.  suc  j ( f `
 z )  =  (/) )
5 suceq 4492 . . . . . . . . 9  |-  ( j  =  k  ->  suc  j  =  suc  k )
65rexeqdv 2735 . . . . . . . 8  |-  ( j  =  k  ->  ( E. z  e.  suc  j ( f `  z )  =  (/)  <->  E. z  e.  suc  k ( f `  z )  =  (/) ) )
74, 6bitrid 192 . . . . . . 7  |-  ( j  =  k  ->  ( E. q  e.  suc  j ( f `  q )  =  (/)  <->  E. z  e.  suc  k ( f `  z )  =  (/) ) )
87ifbid 3624 . . . . . 6  |-  ( j  =  k  ->  if ( E. q  e.  suc  j ( f `  q )  =  (/) ,  (/) ,  1o )  =  if ( E. z  e.  suc  k ( f `
 z )  =  (/) ,  (/) ,  1o ) )
98cbvmptv 4179 . . . . 5  |-  ( j  e.  om  |->  if ( E. q  e.  suc  j ( f `  q )  =  (/) ,  (/) ,  1o ) )  =  ( k  e. 
om  |->  if ( E. z  e.  suc  k
( f `  z
)  =  (/) ,  (/) ,  1o ) )
10 simpl 109 . . . . . 6  |-  ( ( A. x  e. DECID  x  =  ( i  e. 
om  |->  1o )  /\  f  e.  ( 2o  ^m 
om ) )  ->  A. x  e. DECID  x  =  ( i  e. 
om  |->  1o ) )
11 id 19 . . . . . . . . 9  |-  ( x  =  z  ->  x  =  z )
12 eqidd 2230 . . . . . . . . . . 11  |-  ( i  =  k  ->  1o  =  1o )
1312cbvmptv 4179 . . . . . . . . . 10  |-  ( i  e.  om  |->  1o )  =  ( k  e. 
om  |->  1o )
1413a1i 9 . . . . . . . . 9  |-  ( x  =  z  ->  (
i  e.  om  |->  1o )  =  ( k  e.  om  |->  1o ) )
1511, 14eqeq12d 2244 . . . . . . . 8  |-  ( x  =  z  ->  (
x  =  ( i  e.  om  |->  1o )  <-> 
z  =  ( k  e.  om  |->  1o ) ) )
1615dcbid 843 . . . . . . 7  |-  ( x  =  z  ->  (DECID  x  =  ( i  e. 
om  |->  1o )  <-> DECID  z  =  (
k  e.  om  |->  1o ) ) )
1716cbvralv 2765 . . . . . 6  |-  ( A. x  e. DECID  x  =  ( i  e. 
om  |->  1o )  <->  A. z  e. DECID  z  =  ( k  e.  om  |->  1o ) )
1810, 17sylib 122 . . . . 5  |-  ( ( A. x  e. DECID  x  =  ( i  e. 
om  |->  1o )  /\  f  e.  ( 2o  ^m 
om ) )  ->  A. z  e. DECID  z  =  ( k  e. 
om  |->  1o ) )
192, 9, 18nninfinfwlpolem 7341 . . . 4  |-  ( ( A. x  e. DECID  x  =  ( i  e. 
om  |->  1o )  /\  f  e.  ( 2o  ^m 
om ) )  -> DECID  A. n  e.  om  ( f `  n )  =  1o )
2019ralrimiva 2603 . . 3  |-  ( A. x  e. DECID  x  =  ( i  e. 
om  |->  1o )  ->  A. f  e.  ( 2o  ^m  om )DECID  A. n  e.  om  ( f `  n )  =  1o )
21 omex 4684 . . . 4  |-  om  e.  _V
22 iswomnimap 7329 . . . 4  |-  ( om  e.  _V  ->  ( om  e. WOmni 
<-> 
A. f  e.  ( 2o  ^m  om )DECID  A. n  e.  om  (
f `  n )  =  1o ) )
2321, 22ax-mp 5 . . 3  |-  ( om  e. WOmni 
<-> 
A. f  e.  ( 2o  ^m  om )DECID  A. n  e.  om  (
f `  n )  =  1o )
2420, 23sylibr 134 . 2  |-  ( A. x  e. DECID  x  =  ( i  e. 
om  |->  1o )  ->  om  e. WOmni )
25 simpl 109 . . . 4  |-  ( ( om  e. WOmni  /\  x  e. )  ->  om  e. WOmni )
26 simpr 110 . . . 4  |-  ( ( om  e. WOmni  /\  x  e. )  ->  x  e. )
2725, 26nninfdcinf 7334 . . 3  |-  ( ( om  e. WOmni  /\  x  e. )  -> DECID 
x  =  ( i  e.  om  |->  1o ) )
2827ralrimiva 2603 . 2  |-  ( om  e. WOmni  ->  A. x  e. DECID  x  =  ( i  e. 
om  |->  1o ) )
2924, 28impbii 126 1  |-  ( A. x  e. DECID  x  =  ( i  e. 
om  |->  1o )  <->  om  e. WOmni )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105  DECID wdc 839    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509   _Vcvv 2799   (/)c0 3491   ifcif 3602    |-> cmpt 4144   suc csuc 4455   omcom 4681   -->wf 5313   ` cfv 5317  (class class class)co 6000   1oc1o 6553   2oc2o 6554    ^m cmap 6793  ℕxnninf 7282  WOmnicwomni 7326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1o 6560  df-2o 6561  df-er 6678  df-map 6795  df-en 6886  df-fin 6888  df-nninf 7283  df-womni 7327
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator