ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfinfwlpo Unicode version

Theorem nninfinfwlpo 7282
Description: The point at infinity in ℕ being isolated is equivalent to the Weak Limited Principle of Omniscience (WLPO). By isolated, we mean that the equality of that point with every other element of ℕ is decidable. From an online post by Martin Escardo. By contrast, elements of ℕ corresponding to natural numbers are isolated (nninfisol 7235). (Contributed by Jim Kingdon, 25-Nov-2025.)
Assertion
Ref Expression
nninfinfwlpo  |-  ( A. x  e. DECID  x  =  ( i  e. 
om  |->  1o )  <->  om  e. WOmni )
Distinct variable group:    x, i

Proof of Theorem nninfinfwlpo
Dummy variables  f  k  n  z  j  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapi 6757 . . . . . 6  |-  ( f  e.  ( 2o  ^m  om )  ->  f : om
--> 2o )
21adantl 277 . . . . 5  |-  ( ( A. x  e. DECID  x  =  ( i  e. 
om  |->  1o )  /\  f  e.  ( 2o  ^m 
om ) )  -> 
f : om --> 2o )
3 fveqeq2 5585 . . . . . . . . 9  |-  ( q  =  z  ->  (
( f `  q
)  =  (/)  <->  ( f `  z )  =  (/) ) )
43cbvrexv 2739 . . . . . . . 8  |-  ( E. q  e.  suc  j
( f `  q
)  =  (/)  <->  E. z  e.  suc  j ( f `
 z )  =  (/) )
5 suceq 4449 . . . . . . . . 9  |-  ( j  =  k  ->  suc  j  =  suc  k )
65rexeqdv 2709 . . . . . . . 8  |-  ( j  =  k  ->  ( E. z  e.  suc  j ( f `  z )  =  (/)  <->  E. z  e.  suc  k ( f `  z )  =  (/) ) )
74, 6bitrid 192 . . . . . . 7  |-  ( j  =  k  ->  ( E. q  e.  suc  j ( f `  q )  =  (/)  <->  E. z  e.  suc  k ( f `  z )  =  (/) ) )
87ifbid 3592 . . . . . 6  |-  ( j  =  k  ->  if ( E. q  e.  suc  j ( f `  q )  =  (/) ,  (/) ,  1o )  =  if ( E. z  e.  suc  k ( f `
 z )  =  (/) ,  (/) ,  1o ) )
98cbvmptv 4140 . . . . 5  |-  ( j  e.  om  |->  if ( E. q  e.  suc  j ( f `  q )  =  (/) ,  (/) ,  1o ) )  =  ( k  e. 
om  |->  if ( E. z  e.  suc  k
( f `  z
)  =  (/) ,  (/) ,  1o ) )
10 simpl 109 . . . . . 6  |-  ( ( A. x  e. DECID  x  =  ( i  e. 
om  |->  1o )  /\  f  e.  ( 2o  ^m 
om ) )  ->  A. x  e. DECID  x  =  ( i  e. 
om  |->  1o ) )
11 id 19 . . . . . . . . 9  |-  ( x  =  z  ->  x  =  z )
12 eqidd 2206 . . . . . . . . . . 11  |-  ( i  =  k  ->  1o  =  1o )
1312cbvmptv 4140 . . . . . . . . . 10  |-  ( i  e.  om  |->  1o )  =  ( k  e. 
om  |->  1o )
1413a1i 9 . . . . . . . . 9  |-  ( x  =  z  ->  (
i  e.  om  |->  1o )  =  ( k  e.  om  |->  1o ) )
1511, 14eqeq12d 2220 . . . . . . . 8  |-  ( x  =  z  ->  (
x  =  ( i  e.  om  |->  1o )  <-> 
z  =  ( k  e.  om  |->  1o ) ) )
1615dcbid 840 . . . . . . 7  |-  ( x  =  z  ->  (DECID  x  =  ( i  e. 
om  |->  1o )  <-> DECID  z  =  (
k  e.  om  |->  1o ) ) )
1716cbvralv 2738 . . . . . 6  |-  ( A. x  e. DECID  x  =  ( i  e. 
om  |->  1o )  <->  A. z  e. DECID  z  =  ( k  e.  om  |->  1o ) )
1810, 17sylib 122 . . . . 5  |-  ( ( A. x  e. DECID  x  =  ( i  e. 
om  |->  1o )  /\  f  e.  ( 2o  ^m 
om ) )  ->  A. z  e. DECID  z  =  ( k  e. 
om  |->  1o ) )
192, 9, 18nninfinfwlpolem 7280 . . . 4  |-  ( ( A. x  e. DECID  x  =  ( i  e. 
om  |->  1o )  /\  f  e.  ( 2o  ^m 
om ) )  -> DECID  A. n  e.  om  ( f `  n )  =  1o )
2019ralrimiva 2579 . . 3  |-  ( A. x  e. DECID  x  =  ( i  e. 
om  |->  1o )  ->  A. f  e.  ( 2o  ^m  om )DECID  A. n  e.  om  ( f `  n )  =  1o )
21 omex 4641 . . . 4  |-  om  e.  _V
22 iswomnimap 7268 . . . 4  |-  ( om  e.  _V  ->  ( om  e. WOmni 
<-> 
A. f  e.  ( 2o  ^m  om )DECID  A. n  e.  om  (
f `  n )  =  1o ) )
2321, 22ax-mp 5 . . 3  |-  ( om  e. WOmni 
<-> 
A. f  e.  ( 2o  ^m  om )DECID  A. n  e.  om  (
f `  n )  =  1o )
2420, 23sylibr 134 . 2  |-  ( A. x  e. DECID  x  =  ( i  e. 
om  |->  1o )  ->  om  e. WOmni )
25 simpl 109 . . . 4  |-  ( ( om  e. WOmni  /\  x  e. )  ->  om  e. WOmni )
26 simpr 110 . . . 4  |-  ( ( om  e. WOmni  /\  x  e. )  ->  x  e. )
2725, 26nninfdcinf 7273 . . 3  |-  ( ( om  e. WOmni  /\  x  e. )  -> DECID 
x  =  ( i  e.  om  |->  1o ) )
2827ralrimiva 2579 . 2  |-  ( om  e. WOmni  ->  A. x  e. DECID  x  =  ( i  e. 
om  |->  1o ) )
2924, 28impbii 126 1  |-  ( A. x  e. DECID  x  =  ( i  e. 
om  |->  1o )  <->  om  e. WOmni )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105  DECID wdc 836    = wceq 1373    e. wcel 2176   A.wral 2484   E.wrex 2485   _Vcvv 2772   (/)c0 3460   ifcif 3571    |-> cmpt 4105   suc csuc 4412   omcom 4638   -->wf 5267   ` cfv 5271  (class class class)co 5944   1oc1o 6495   2oc2o 6496    ^m cmap 6735  ℕxnninf 7221  WOmnicwomni 7265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1o 6502  df-2o 6503  df-er 6620  df-map 6737  df-en 6828  df-fin 6830  df-nninf 7222  df-womni 7266
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator