ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfinfwlpo Unicode version

Theorem nninfinfwlpo 7308
Description: The point at infinity in ℕ being isolated is equivalent to the Weak Limited Principle of Omniscience (WLPO). By isolated, we mean that the equality of that point with every other element of ℕ is decidable. From an online post by Martin Escardo. By contrast, elements of ℕ corresponding to natural numbers are isolated (nninfisol 7261). (Contributed by Jim Kingdon, 25-Nov-2025.)
Assertion
Ref Expression
nninfinfwlpo  |-  ( A. x  e. DECID  x  =  ( i  e. 
om  |->  1o )  <->  om  e. WOmni )
Distinct variable group:    x, i

Proof of Theorem nninfinfwlpo
Dummy variables  f  k  n  z  j  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapi 6780 . . . . . 6  |-  ( f  e.  ( 2o  ^m  om )  ->  f : om
--> 2o )
21adantl 277 . . . . 5  |-  ( ( A. x  e. DECID  x  =  ( i  e. 
om  |->  1o )  /\  f  e.  ( 2o  ^m 
om ) )  -> 
f : om --> 2o )
3 fveqeq2 5608 . . . . . . . . 9  |-  ( q  =  z  ->  (
( f `  q
)  =  (/)  <->  ( f `  z )  =  (/) ) )
43cbvrexv 2743 . . . . . . . 8  |-  ( E. q  e.  suc  j
( f `  q
)  =  (/)  <->  E. z  e.  suc  j ( f `
 z )  =  (/) )
5 suceq 4467 . . . . . . . . 9  |-  ( j  =  k  ->  suc  j  =  suc  k )
65rexeqdv 2712 . . . . . . . 8  |-  ( j  =  k  ->  ( E. z  e.  suc  j ( f `  z )  =  (/)  <->  E. z  e.  suc  k ( f `  z )  =  (/) ) )
74, 6bitrid 192 . . . . . . 7  |-  ( j  =  k  ->  ( E. q  e.  suc  j ( f `  q )  =  (/)  <->  E. z  e.  suc  k ( f `  z )  =  (/) ) )
87ifbid 3601 . . . . . 6  |-  ( j  =  k  ->  if ( E. q  e.  suc  j ( f `  q )  =  (/) ,  (/) ,  1o )  =  if ( E. z  e.  suc  k ( f `
 z )  =  (/) ,  (/) ,  1o ) )
98cbvmptv 4156 . . . . 5  |-  ( j  e.  om  |->  if ( E. q  e.  suc  j ( f `  q )  =  (/) ,  (/) ,  1o ) )  =  ( k  e. 
om  |->  if ( E. z  e.  suc  k
( f `  z
)  =  (/) ,  (/) ,  1o ) )
10 simpl 109 . . . . . 6  |-  ( ( A. x  e. DECID  x  =  ( i  e. 
om  |->  1o )  /\  f  e.  ( 2o  ^m 
om ) )  ->  A. x  e. DECID  x  =  ( i  e. 
om  |->  1o ) )
11 id 19 . . . . . . . . 9  |-  ( x  =  z  ->  x  =  z )
12 eqidd 2208 . . . . . . . . . . 11  |-  ( i  =  k  ->  1o  =  1o )
1312cbvmptv 4156 . . . . . . . . . 10  |-  ( i  e.  om  |->  1o )  =  ( k  e. 
om  |->  1o )
1413a1i 9 . . . . . . . . 9  |-  ( x  =  z  ->  (
i  e.  om  |->  1o )  =  ( k  e.  om  |->  1o ) )
1511, 14eqeq12d 2222 . . . . . . . 8  |-  ( x  =  z  ->  (
x  =  ( i  e.  om  |->  1o )  <-> 
z  =  ( k  e.  om  |->  1o ) ) )
1615dcbid 840 . . . . . . 7  |-  ( x  =  z  ->  (DECID  x  =  ( i  e. 
om  |->  1o )  <-> DECID  z  =  (
k  e.  om  |->  1o ) ) )
1716cbvralv 2742 . . . . . 6  |-  ( A. x  e. DECID  x  =  ( i  e. 
om  |->  1o )  <->  A. z  e. DECID  z  =  ( k  e.  om  |->  1o ) )
1810, 17sylib 122 . . . . 5  |-  ( ( A. x  e. DECID  x  =  ( i  e. 
om  |->  1o )  /\  f  e.  ( 2o  ^m 
om ) )  ->  A. z  e. DECID  z  =  ( k  e. 
om  |->  1o ) )
192, 9, 18nninfinfwlpolem 7306 . . . 4  |-  ( ( A. x  e. DECID  x  =  ( i  e. 
om  |->  1o )  /\  f  e.  ( 2o  ^m 
om ) )  -> DECID  A. n  e.  om  ( f `  n )  =  1o )
2019ralrimiva 2581 . . 3  |-  ( A. x  e. DECID  x  =  ( i  e. 
om  |->  1o )  ->  A. f  e.  ( 2o  ^m  om )DECID  A. n  e.  om  ( f `  n )  =  1o )
21 omex 4659 . . . 4  |-  om  e.  _V
22 iswomnimap 7294 . . . 4  |-  ( om  e.  _V  ->  ( om  e. WOmni 
<-> 
A. f  e.  ( 2o  ^m  om )DECID  A. n  e.  om  (
f `  n )  =  1o ) )
2321, 22ax-mp 5 . . 3  |-  ( om  e. WOmni 
<-> 
A. f  e.  ( 2o  ^m  om )DECID  A. n  e.  om  (
f `  n )  =  1o )
2420, 23sylibr 134 . 2  |-  ( A. x  e. DECID  x  =  ( i  e. 
om  |->  1o )  ->  om  e. WOmni )
25 simpl 109 . . . 4  |-  ( ( om  e. WOmni  /\  x  e. )  ->  om  e. WOmni )
26 simpr 110 . . . 4  |-  ( ( om  e. WOmni  /\  x  e. )  ->  x  e. )
2725, 26nninfdcinf 7299 . . 3  |-  ( ( om  e. WOmni  /\  x  e. )  -> DECID 
x  =  ( i  e.  om  |->  1o ) )
2827ralrimiva 2581 . 2  |-  ( om  e. WOmni  ->  A. x  e. DECID  x  =  ( i  e. 
om  |->  1o ) )
2924, 28impbii 126 1  |-  ( A. x  e. DECID  x  =  ( i  e. 
om  |->  1o )  <->  om  e. WOmni )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105  DECID wdc 836    = wceq 1373    e. wcel 2178   A.wral 2486   E.wrex 2487   _Vcvv 2776   (/)c0 3468   ifcif 3579    |-> cmpt 4121   suc csuc 4430   omcom 4656   -->wf 5286   ` cfv 5290  (class class class)co 5967   1oc1o 6518   2oc2o 6519    ^m cmap 6758  ℕxnninf 7247  WOmnicwomni 7291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1o 6525  df-2o 6526  df-er 6643  df-map 6760  df-en 6851  df-fin 6853  df-nninf 7248  df-womni 7292
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator