| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nninfinfwlpo | GIF version | ||
| Description: The point at infinity in ℕ∞ being isolated is equivalent to the Weak Limited Principle of Omniscience (WLPO). By isolated, we mean that the equality of that point with every other element of ℕ∞ is decidable. From an online post by Martin Escardo. By contrast, elements of ℕ∞ corresponding to natural numbers are isolated (nninfisol 7296). (Contributed by Jim Kingdon, 25-Nov-2025.) |
| Ref | Expression |
|---|---|
| nninfinfwlpo | ⊢ (∀𝑥 ∈ ℕ∞ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o) ↔ ω ∈ WOmni) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapi 6815 | . . . . . 6 ⊢ (𝑓 ∈ (2o ↑𝑚 ω) → 𝑓:ω⟶2o) | |
| 2 | 1 | adantl 277 | . . . . 5 ⊢ ((∀𝑥 ∈ ℕ∞ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o) ∧ 𝑓 ∈ (2o ↑𝑚 ω)) → 𝑓:ω⟶2o) |
| 3 | fveqeq2 5635 | . . . . . . . . 9 ⊢ (𝑞 = 𝑧 → ((𝑓‘𝑞) = ∅ ↔ (𝑓‘𝑧) = ∅)) | |
| 4 | 3 | cbvrexv 2766 | . . . . . . . 8 ⊢ (∃𝑞 ∈ suc 𝑗(𝑓‘𝑞) = ∅ ↔ ∃𝑧 ∈ suc 𝑗(𝑓‘𝑧) = ∅) |
| 5 | suceq 4492 | . . . . . . . . 9 ⊢ (𝑗 = 𝑘 → suc 𝑗 = suc 𝑘) | |
| 6 | 5 | rexeqdv 2735 | . . . . . . . 8 ⊢ (𝑗 = 𝑘 → (∃𝑧 ∈ suc 𝑗(𝑓‘𝑧) = ∅ ↔ ∃𝑧 ∈ suc 𝑘(𝑓‘𝑧) = ∅)) |
| 7 | 4, 6 | bitrid 192 | . . . . . . 7 ⊢ (𝑗 = 𝑘 → (∃𝑞 ∈ suc 𝑗(𝑓‘𝑞) = ∅ ↔ ∃𝑧 ∈ suc 𝑘(𝑓‘𝑧) = ∅)) |
| 8 | 7 | ifbid 3624 | . . . . . 6 ⊢ (𝑗 = 𝑘 → if(∃𝑞 ∈ suc 𝑗(𝑓‘𝑞) = ∅, ∅, 1o) = if(∃𝑧 ∈ suc 𝑘(𝑓‘𝑧) = ∅, ∅, 1o)) |
| 9 | 8 | cbvmptv 4179 | . . . . 5 ⊢ (𝑗 ∈ ω ↦ if(∃𝑞 ∈ suc 𝑗(𝑓‘𝑞) = ∅, ∅, 1o)) = (𝑘 ∈ ω ↦ if(∃𝑧 ∈ suc 𝑘(𝑓‘𝑧) = ∅, ∅, 1o)) |
| 10 | simpl 109 | . . . . . 6 ⊢ ((∀𝑥 ∈ ℕ∞ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o) ∧ 𝑓 ∈ (2o ↑𝑚 ω)) → ∀𝑥 ∈ ℕ∞ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o)) | |
| 11 | id 19 | . . . . . . . . 9 ⊢ (𝑥 = 𝑧 → 𝑥 = 𝑧) | |
| 12 | eqidd 2230 | . . . . . . . . . . 11 ⊢ (𝑖 = 𝑘 → 1o = 1o) | |
| 13 | 12 | cbvmptv 4179 | . . . . . . . . . 10 ⊢ (𝑖 ∈ ω ↦ 1o) = (𝑘 ∈ ω ↦ 1o) |
| 14 | 13 | a1i 9 | . . . . . . . . 9 ⊢ (𝑥 = 𝑧 → (𝑖 ∈ ω ↦ 1o) = (𝑘 ∈ ω ↦ 1o)) |
| 15 | 11, 14 | eqeq12d 2244 | . . . . . . . 8 ⊢ (𝑥 = 𝑧 → (𝑥 = (𝑖 ∈ ω ↦ 1o) ↔ 𝑧 = (𝑘 ∈ ω ↦ 1o))) |
| 16 | 15 | dcbid 843 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (DECID 𝑥 = (𝑖 ∈ ω ↦ 1o) ↔ DECID 𝑧 = (𝑘 ∈ ω ↦ 1o))) |
| 17 | 16 | cbvralv 2765 | . . . . . 6 ⊢ (∀𝑥 ∈ ℕ∞ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o) ↔ ∀𝑧 ∈ ℕ∞ DECID 𝑧 = (𝑘 ∈ ω ↦ 1o)) |
| 18 | 10, 17 | sylib 122 | . . . . 5 ⊢ ((∀𝑥 ∈ ℕ∞ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o) ∧ 𝑓 ∈ (2o ↑𝑚 ω)) → ∀𝑧 ∈ ℕ∞ DECID 𝑧 = (𝑘 ∈ ω ↦ 1o)) |
| 19 | 2, 9, 18 | nninfinfwlpolem 7341 | . . . 4 ⊢ ((∀𝑥 ∈ ℕ∞ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o) ∧ 𝑓 ∈ (2o ↑𝑚 ω)) → DECID ∀𝑛 ∈ ω (𝑓‘𝑛) = 1o) |
| 20 | 19 | ralrimiva 2603 | . . 3 ⊢ (∀𝑥 ∈ ℕ∞ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o) → ∀𝑓 ∈ (2o ↑𝑚 ω)DECID ∀𝑛 ∈ ω (𝑓‘𝑛) = 1o) |
| 21 | omex 4684 | . . . 4 ⊢ ω ∈ V | |
| 22 | iswomnimap 7329 | . . . 4 ⊢ (ω ∈ V → (ω ∈ WOmni ↔ ∀𝑓 ∈ (2o ↑𝑚 ω)DECID ∀𝑛 ∈ ω (𝑓‘𝑛) = 1o)) | |
| 23 | 21, 22 | ax-mp 5 | . . 3 ⊢ (ω ∈ WOmni ↔ ∀𝑓 ∈ (2o ↑𝑚 ω)DECID ∀𝑛 ∈ ω (𝑓‘𝑛) = 1o) |
| 24 | 20, 23 | sylibr 134 | . 2 ⊢ (∀𝑥 ∈ ℕ∞ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o) → ω ∈ WOmni) |
| 25 | simpl 109 | . . . 4 ⊢ ((ω ∈ WOmni ∧ 𝑥 ∈ ℕ∞) → ω ∈ WOmni) | |
| 26 | simpr 110 | . . . 4 ⊢ ((ω ∈ WOmni ∧ 𝑥 ∈ ℕ∞) → 𝑥 ∈ ℕ∞) | |
| 27 | 25, 26 | nninfdcinf 7334 | . . 3 ⊢ ((ω ∈ WOmni ∧ 𝑥 ∈ ℕ∞) → DECID 𝑥 = (𝑖 ∈ ω ↦ 1o)) |
| 28 | 27 | ralrimiva 2603 | . 2 ⊢ (ω ∈ WOmni → ∀𝑥 ∈ ℕ∞ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o)) |
| 29 | 24, 28 | impbii 126 | 1 ⊢ (∀𝑥 ∈ ℕ∞ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o) ↔ ω ∈ WOmni) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 DECID wdc 839 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ∃wrex 2509 Vcvv 2799 ∅c0 3491 ifcif 3602 ↦ cmpt 4144 suc csuc 4455 ωcom 4681 ⟶wf 5313 ‘cfv 5317 (class class class)co 6000 1oc1o 6553 2oc2o 6554 ↑𝑚 cmap 6793 ℕ∞xnninf 7282 WOmnicwomni 7326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1o 6560 df-2o 6561 df-er 6678 df-map 6795 df-en 6886 df-fin 6888 df-nninf 7283 df-womni 7327 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |