| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nninfinfwlpo | GIF version | ||
| Description: The point at infinity in ℕ∞ being isolated is equivalent to the Weak Limited Principle of Omniscience (WLPO). By isolated, we mean that the equality of that point with every other element of ℕ∞ is decidable. From an online post by Martin Escardo. By contrast, elements of ℕ∞ corresponding to natural numbers are isolated (nninfisol 7261). (Contributed by Jim Kingdon, 25-Nov-2025.) |
| Ref | Expression |
|---|---|
| nninfinfwlpo | ⊢ (∀𝑥 ∈ ℕ∞ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o) ↔ ω ∈ WOmni) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapi 6780 | . . . . . 6 ⊢ (𝑓 ∈ (2o ↑𝑚 ω) → 𝑓:ω⟶2o) | |
| 2 | 1 | adantl 277 | . . . . 5 ⊢ ((∀𝑥 ∈ ℕ∞ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o) ∧ 𝑓 ∈ (2o ↑𝑚 ω)) → 𝑓:ω⟶2o) |
| 3 | fveqeq2 5608 | . . . . . . . . 9 ⊢ (𝑞 = 𝑧 → ((𝑓‘𝑞) = ∅ ↔ (𝑓‘𝑧) = ∅)) | |
| 4 | 3 | cbvrexv 2743 | . . . . . . . 8 ⊢ (∃𝑞 ∈ suc 𝑗(𝑓‘𝑞) = ∅ ↔ ∃𝑧 ∈ suc 𝑗(𝑓‘𝑧) = ∅) |
| 5 | suceq 4467 | . . . . . . . . 9 ⊢ (𝑗 = 𝑘 → suc 𝑗 = suc 𝑘) | |
| 6 | 5 | rexeqdv 2712 | . . . . . . . 8 ⊢ (𝑗 = 𝑘 → (∃𝑧 ∈ suc 𝑗(𝑓‘𝑧) = ∅ ↔ ∃𝑧 ∈ suc 𝑘(𝑓‘𝑧) = ∅)) |
| 7 | 4, 6 | bitrid 192 | . . . . . . 7 ⊢ (𝑗 = 𝑘 → (∃𝑞 ∈ suc 𝑗(𝑓‘𝑞) = ∅ ↔ ∃𝑧 ∈ suc 𝑘(𝑓‘𝑧) = ∅)) |
| 8 | 7 | ifbid 3601 | . . . . . 6 ⊢ (𝑗 = 𝑘 → if(∃𝑞 ∈ suc 𝑗(𝑓‘𝑞) = ∅, ∅, 1o) = if(∃𝑧 ∈ suc 𝑘(𝑓‘𝑧) = ∅, ∅, 1o)) |
| 9 | 8 | cbvmptv 4156 | . . . . 5 ⊢ (𝑗 ∈ ω ↦ if(∃𝑞 ∈ suc 𝑗(𝑓‘𝑞) = ∅, ∅, 1o)) = (𝑘 ∈ ω ↦ if(∃𝑧 ∈ suc 𝑘(𝑓‘𝑧) = ∅, ∅, 1o)) |
| 10 | simpl 109 | . . . . . 6 ⊢ ((∀𝑥 ∈ ℕ∞ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o) ∧ 𝑓 ∈ (2o ↑𝑚 ω)) → ∀𝑥 ∈ ℕ∞ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o)) | |
| 11 | id 19 | . . . . . . . . 9 ⊢ (𝑥 = 𝑧 → 𝑥 = 𝑧) | |
| 12 | eqidd 2208 | . . . . . . . . . . 11 ⊢ (𝑖 = 𝑘 → 1o = 1o) | |
| 13 | 12 | cbvmptv 4156 | . . . . . . . . . 10 ⊢ (𝑖 ∈ ω ↦ 1o) = (𝑘 ∈ ω ↦ 1o) |
| 14 | 13 | a1i 9 | . . . . . . . . 9 ⊢ (𝑥 = 𝑧 → (𝑖 ∈ ω ↦ 1o) = (𝑘 ∈ ω ↦ 1o)) |
| 15 | 11, 14 | eqeq12d 2222 | . . . . . . . 8 ⊢ (𝑥 = 𝑧 → (𝑥 = (𝑖 ∈ ω ↦ 1o) ↔ 𝑧 = (𝑘 ∈ ω ↦ 1o))) |
| 16 | 15 | dcbid 840 | . . . . . . 7 ⊢ (𝑥 = 𝑧 → (DECID 𝑥 = (𝑖 ∈ ω ↦ 1o) ↔ DECID 𝑧 = (𝑘 ∈ ω ↦ 1o))) |
| 17 | 16 | cbvralv 2742 | . . . . . 6 ⊢ (∀𝑥 ∈ ℕ∞ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o) ↔ ∀𝑧 ∈ ℕ∞ DECID 𝑧 = (𝑘 ∈ ω ↦ 1o)) |
| 18 | 10, 17 | sylib 122 | . . . . 5 ⊢ ((∀𝑥 ∈ ℕ∞ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o) ∧ 𝑓 ∈ (2o ↑𝑚 ω)) → ∀𝑧 ∈ ℕ∞ DECID 𝑧 = (𝑘 ∈ ω ↦ 1o)) |
| 19 | 2, 9, 18 | nninfinfwlpolem 7306 | . . . 4 ⊢ ((∀𝑥 ∈ ℕ∞ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o) ∧ 𝑓 ∈ (2o ↑𝑚 ω)) → DECID ∀𝑛 ∈ ω (𝑓‘𝑛) = 1o) |
| 20 | 19 | ralrimiva 2581 | . . 3 ⊢ (∀𝑥 ∈ ℕ∞ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o) → ∀𝑓 ∈ (2o ↑𝑚 ω)DECID ∀𝑛 ∈ ω (𝑓‘𝑛) = 1o) |
| 21 | omex 4659 | . . . 4 ⊢ ω ∈ V | |
| 22 | iswomnimap 7294 | . . . 4 ⊢ (ω ∈ V → (ω ∈ WOmni ↔ ∀𝑓 ∈ (2o ↑𝑚 ω)DECID ∀𝑛 ∈ ω (𝑓‘𝑛) = 1o)) | |
| 23 | 21, 22 | ax-mp 5 | . . 3 ⊢ (ω ∈ WOmni ↔ ∀𝑓 ∈ (2o ↑𝑚 ω)DECID ∀𝑛 ∈ ω (𝑓‘𝑛) = 1o) |
| 24 | 20, 23 | sylibr 134 | . 2 ⊢ (∀𝑥 ∈ ℕ∞ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o) → ω ∈ WOmni) |
| 25 | simpl 109 | . . . 4 ⊢ ((ω ∈ WOmni ∧ 𝑥 ∈ ℕ∞) → ω ∈ WOmni) | |
| 26 | simpr 110 | . . . 4 ⊢ ((ω ∈ WOmni ∧ 𝑥 ∈ ℕ∞) → 𝑥 ∈ ℕ∞) | |
| 27 | 25, 26 | nninfdcinf 7299 | . . 3 ⊢ ((ω ∈ WOmni ∧ 𝑥 ∈ ℕ∞) → DECID 𝑥 = (𝑖 ∈ ω ↦ 1o)) |
| 28 | 27 | ralrimiva 2581 | . 2 ⊢ (ω ∈ WOmni → ∀𝑥 ∈ ℕ∞ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o)) |
| 29 | 24, 28 | impbii 126 | 1 ⊢ (∀𝑥 ∈ ℕ∞ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o) ↔ ω ∈ WOmni) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 DECID wdc 836 = wceq 1373 ∈ wcel 2178 ∀wral 2486 ∃wrex 2487 Vcvv 2776 ∅c0 3468 ifcif 3579 ↦ cmpt 4121 suc csuc 4430 ωcom 4656 ⟶wf 5286 ‘cfv 5290 (class class class)co 5967 1oc1o 6518 2oc2o 6519 ↑𝑚 cmap 6758 ℕ∞xnninf 7247 WOmnicwomni 7291 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1o 6525 df-2o 6526 df-er 6643 df-map 6760 df-en 6851 df-fin 6853 df-nninf 7248 df-womni 7292 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |