ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfinfwlpo GIF version

Theorem nninfinfwlpo 7282
Description: The point at infinity in being isolated is equivalent to the Weak Limited Principle of Omniscience (WLPO). By isolated, we mean that the equality of that point with every other element of is decidable. From an online post by Martin Escardo. By contrast, elements of corresponding to natural numbers are isolated (nninfisol 7235). (Contributed by Jim Kingdon, 25-Nov-2025.)
Assertion
Ref Expression
nninfinfwlpo (∀𝑥 ∈ ℕ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o) ↔ ω ∈ WOmni)
Distinct variable group:   𝑥,𝑖

Proof of Theorem nninfinfwlpo
Dummy variables 𝑓 𝑘 𝑛 𝑧 𝑗 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapi 6757 . . . . . 6 (𝑓 ∈ (2o𝑚 ω) → 𝑓:ω⟶2o)
21adantl 277 . . . . 5 ((∀𝑥 ∈ ℕ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o) ∧ 𝑓 ∈ (2o𝑚 ω)) → 𝑓:ω⟶2o)
3 fveqeq2 5585 . . . . . . . . 9 (𝑞 = 𝑧 → ((𝑓𝑞) = ∅ ↔ (𝑓𝑧) = ∅))
43cbvrexv 2739 . . . . . . . 8 (∃𝑞 ∈ suc 𝑗(𝑓𝑞) = ∅ ↔ ∃𝑧 ∈ suc 𝑗(𝑓𝑧) = ∅)
5 suceq 4449 . . . . . . . . 9 (𝑗 = 𝑘 → suc 𝑗 = suc 𝑘)
65rexeqdv 2709 . . . . . . . 8 (𝑗 = 𝑘 → (∃𝑧 ∈ suc 𝑗(𝑓𝑧) = ∅ ↔ ∃𝑧 ∈ suc 𝑘(𝑓𝑧) = ∅))
74, 6bitrid 192 . . . . . . 7 (𝑗 = 𝑘 → (∃𝑞 ∈ suc 𝑗(𝑓𝑞) = ∅ ↔ ∃𝑧 ∈ suc 𝑘(𝑓𝑧) = ∅))
87ifbid 3592 . . . . . 6 (𝑗 = 𝑘 → if(∃𝑞 ∈ suc 𝑗(𝑓𝑞) = ∅, ∅, 1o) = if(∃𝑧 ∈ suc 𝑘(𝑓𝑧) = ∅, ∅, 1o))
98cbvmptv 4140 . . . . 5 (𝑗 ∈ ω ↦ if(∃𝑞 ∈ suc 𝑗(𝑓𝑞) = ∅, ∅, 1o)) = (𝑘 ∈ ω ↦ if(∃𝑧 ∈ suc 𝑘(𝑓𝑧) = ∅, ∅, 1o))
10 simpl 109 . . . . . 6 ((∀𝑥 ∈ ℕ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o) ∧ 𝑓 ∈ (2o𝑚 ω)) → ∀𝑥 ∈ ℕ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o))
11 id 19 . . . . . . . . 9 (𝑥 = 𝑧𝑥 = 𝑧)
12 eqidd 2206 . . . . . . . . . . 11 (𝑖 = 𝑘 → 1o = 1o)
1312cbvmptv 4140 . . . . . . . . . 10 (𝑖 ∈ ω ↦ 1o) = (𝑘 ∈ ω ↦ 1o)
1413a1i 9 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑖 ∈ ω ↦ 1o) = (𝑘 ∈ ω ↦ 1o))
1511, 14eqeq12d 2220 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥 = (𝑖 ∈ ω ↦ 1o) ↔ 𝑧 = (𝑘 ∈ ω ↦ 1o)))
1615dcbid 840 . . . . . . 7 (𝑥 = 𝑧 → (DECID 𝑥 = (𝑖 ∈ ω ↦ 1o) ↔ DECID 𝑧 = (𝑘 ∈ ω ↦ 1o)))
1716cbvralv 2738 . . . . . 6 (∀𝑥 ∈ ℕ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o) ↔ ∀𝑧 ∈ ℕ DECID 𝑧 = (𝑘 ∈ ω ↦ 1o))
1810, 17sylib 122 . . . . 5 ((∀𝑥 ∈ ℕ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o) ∧ 𝑓 ∈ (2o𝑚 ω)) → ∀𝑧 ∈ ℕ DECID 𝑧 = (𝑘 ∈ ω ↦ 1o))
192, 9, 18nninfinfwlpolem 7280 . . . 4 ((∀𝑥 ∈ ℕ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o) ∧ 𝑓 ∈ (2o𝑚 ω)) → DECID𝑛 ∈ ω (𝑓𝑛) = 1o)
2019ralrimiva 2579 . . 3 (∀𝑥 ∈ ℕ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o) → ∀𝑓 ∈ (2o𝑚 ω)DECID𝑛 ∈ ω (𝑓𝑛) = 1o)
21 omex 4641 . . . 4 ω ∈ V
22 iswomnimap 7268 . . . 4 (ω ∈ V → (ω ∈ WOmni ↔ ∀𝑓 ∈ (2o𝑚 ω)DECID𝑛 ∈ ω (𝑓𝑛) = 1o))
2321, 22ax-mp 5 . . 3 (ω ∈ WOmni ↔ ∀𝑓 ∈ (2o𝑚 ω)DECID𝑛 ∈ ω (𝑓𝑛) = 1o)
2420, 23sylibr 134 . 2 (∀𝑥 ∈ ℕ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o) → ω ∈ WOmni)
25 simpl 109 . . . 4 ((ω ∈ WOmni ∧ 𝑥 ∈ ℕ) → ω ∈ WOmni)
26 simpr 110 . . . 4 ((ω ∈ WOmni ∧ 𝑥 ∈ ℕ) → 𝑥 ∈ ℕ)
2725, 26nninfdcinf 7273 . . 3 ((ω ∈ WOmni ∧ 𝑥 ∈ ℕ) → DECID 𝑥 = (𝑖 ∈ ω ↦ 1o))
2827ralrimiva 2579 . 2 (ω ∈ WOmni → ∀𝑥 ∈ ℕ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o))
2924, 28impbii 126 1 (∀𝑥 ∈ ℕ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o) ↔ ω ∈ WOmni)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  DECID wdc 836   = wceq 1373  wcel 2176  wral 2484  wrex 2485  Vcvv 2772  c0 3460  ifcif 3571  cmpt 4105  suc csuc 4412  ωcom 4638  wf 5267  cfv 5271  (class class class)co 5944  1oc1o 6495  2oc2o 6496  𝑚 cmap 6735  xnninf 7221  WOmnicwomni 7265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1o 6502  df-2o 6503  df-er 6620  df-map 6737  df-en 6828  df-fin 6830  df-nninf 7222  df-womni 7266
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator