ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nninfinfwlpo GIF version

Theorem nninfinfwlpo 7308
Description: The point at infinity in being isolated is equivalent to the Weak Limited Principle of Omniscience (WLPO). By isolated, we mean that the equality of that point with every other element of is decidable. From an online post by Martin Escardo. By contrast, elements of corresponding to natural numbers are isolated (nninfisol 7261). (Contributed by Jim Kingdon, 25-Nov-2025.)
Assertion
Ref Expression
nninfinfwlpo (∀𝑥 ∈ ℕ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o) ↔ ω ∈ WOmni)
Distinct variable group:   𝑥,𝑖

Proof of Theorem nninfinfwlpo
Dummy variables 𝑓 𝑘 𝑛 𝑧 𝑗 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapi 6780 . . . . . 6 (𝑓 ∈ (2o𝑚 ω) → 𝑓:ω⟶2o)
21adantl 277 . . . . 5 ((∀𝑥 ∈ ℕ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o) ∧ 𝑓 ∈ (2o𝑚 ω)) → 𝑓:ω⟶2o)
3 fveqeq2 5608 . . . . . . . . 9 (𝑞 = 𝑧 → ((𝑓𝑞) = ∅ ↔ (𝑓𝑧) = ∅))
43cbvrexv 2743 . . . . . . . 8 (∃𝑞 ∈ suc 𝑗(𝑓𝑞) = ∅ ↔ ∃𝑧 ∈ suc 𝑗(𝑓𝑧) = ∅)
5 suceq 4467 . . . . . . . . 9 (𝑗 = 𝑘 → suc 𝑗 = suc 𝑘)
65rexeqdv 2712 . . . . . . . 8 (𝑗 = 𝑘 → (∃𝑧 ∈ suc 𝑗(𝑓𝑧) = ∅ ↔ ∃𝑧 ∈ suc 𝑘(𝑓𝑧) = ∅))
74, 6bitrid 192 . . . . . . 7 (𝑗 = 𝑘 → (∃𝑞 ∈ suc 𝑗(𝑓𝑞) = ∅ ↔ ∃𝑧 ∈ suc 𝑘(𝑓𝑧) = ∅))
87ifbid 3601 . . . . . 6 (𝑗 = 𝑘 → if(∃𝑞 ∈ suc 𝑗(𝑓𝑞) = ∅, ∅, 1o) = if(∃𝑧 ∈ suc 𝑘(𝑓𝑧) = ∅, ∅, 1o))
98cbvmptv 4156 . . . . 5 (𝑗 ∈ ω ↦ if(∃𝑞 ∈ suc 𝑗(𝑓𝑞) = ∅, ∅, 1o)) = (𝑘 ∈ ω ↦ if(∃𝑧 ∈ suc 𝑘(𝑓𝑧) = ∅, ∅, 1o))
10 simpl 109 . . . . . 6 ((∀𝑥 ∈ ℕ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o) ∧ 𝑓 ∈ (2o𝑚 ω)) → ∀𝑥 ∈ ℕ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o))
11 id 19 . . . . . . . . 9 (𝑥 = 𝑧𝑥 = 𝑧)
12 eqidd 2208 . . . . . . . . . . 11 (𝑖 = 𝑘 → 1o = 1o)
1312cbvmptv 4156 . . . . . . . . . 10 (𝑖 ∈ ω ↦ 1o) = (𝑘 ∈ ω ↦ 1o)
1413a1i 9 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑖 ∈ ω ↦ 1o) = (𝑘 ∈ ω ↦ 1o))
1511, 14eqeq12d 2222 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥 = (𝑖 ∈ ω ↦ 1o) ↔ 𝑧 = (𝑘 ∈ ω ↦ 1o)))
1615dcbid 840 . . . . . . 7 (𝑥 = 𝑧 → (DECID 𝑥 = (𝑖 ∈ ω ↦ 1o) ↔ DECID 𝑧 = (𝑘 ∈ ω ↦ 1o)))
1716cbvralv 2742 . . . . . 6 (∀𝑥 ∈ ℕ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o) ↔ ∀𝑧 ∈ ℕ DECID 𝑧 = (𝑘 ∈ ω ↦ 1o))
1810, 17sylib 122 . . . . 5 ((∀𝑥 ∈ ℕ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o) ∧ 𝑓 ∈ (2o𝑚 ω)) → ∀𝑧 ∈ ℕ DECID 𝑧 = (𝑘 ∈ ω ↦ 1o))
192, 9, 18nninfinfwlpolem 7306 . . . 4 ((∀𝑥 ∈ ℕ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o) ∧ 𝑓 ∈ (2o𝑚 ω)) → DECID𝑛 ∈ ω (𝑓𝑛) = 1o)
2019ralrimiva 2581 . . 3 (∀𝑥 ∈ ℕ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o) → ∀𝑓 ∈ (2o𝑚 ω)DECID𝑛 ∈ ω (𝑓𝑛) = 1o)
21 omex 4659 . . . 4 ω ∈ V
22 iswomnimap 7294 . . . 4 (ω ∈ V → (ω ∈ WOmni ↔ ∀𝑓 ∈ (2o𝑚 ω)DECID𝑛 ∈ ω (𝑓𝑛) = 1o))
2321, 22ax-mp 5 . . 3 (ω ∈ WOmni ↔ ∀𝑓 ∈ (2o𝑚 ω)DECID𝑛 ∈ ω (𝑓𝑛) = 1o)
2420, 23sylibr 134 . 2 (∀𝑥 ∈ ℕ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o) → ω ∈ WOmni)
25 simpl 109 . . . 4 ((ω ∈ WOmni ∧ 𝑥 ∈ ℕ) → ω ∈ WOmni)
26 simpr 110 . . . 4 ((ω ∈ WOmni ∧ 𝑥 ∈ ℕ) → 𝑥 ∈ ℕ)
2725, 26nninfdcinf 7299 . . 3 ((ω ∈ WOmni ∧ 𝑥 ∈ ℕ) → DECID 𝑥 = (𝑖 ∈ ω ↦ 1o))
2827ralrimiva 2581 . 2 (ω ∈ WOmni → ∀𝑥 ∈ ℕ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o))
2924, 28impbii 126 1 (∀𝑥 ∈ ℕ DECID 𝑥 = (𝑖 ∈ ω ↦ 1o) ↔ ω ∈ WOmni)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  DECID wdc 836   = wceq 1373  wcel 2178  wral 2486  wrex 2487  Vcvv 2776  c0 3468  ifcif 3579  cmpt 4121  suc csuc 4430  ωcom 4656  wf 5286  cfv 5290  (class class class)co 5967  1oc1o 6518  2oc2o 6519  𝑚 cmap 6758  xnninf 7247  WOmnicwomni 7291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1o 6525  df-2o 6526  df-er 6643  df-map 6760  df-en 6851  df-fin 6853  df-nninf 7248  df-womni 7292
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator