ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnmcom GIF version

Theorem nnmcom 6588
Description: Multiplication of natural numbers is commutative. Theorem 4K(5) of [Enderton] p. 81. (Contributed by NM, 21-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nnmcom ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴))

Proof of Theorem nnmcom
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5964 . . . . 5 (𝑥 = 𝐴 → (𝑥 ·o 𝐵) = (𝐴 ·o 𝐵))
2 oveq2 5965 . . . . 5 (𝑥 = 𝐴 → (𝐵 ·o 𝑥) = (𝐵 ·o 𝐴))
31, 2eqeq12d 2221 . . . 4 (𝑥 = 𝐴 → ((𝑥 ·o 𝐵) = (𝐵 ·o 𝑥) ↔ (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴)))
43imbi2d 230 . . 3 (𝑥 = 𝐴 → ((𝐵 ∈ ω → (𝑥 ·o 𝐵) = (𝐵 ·o 𝑥)) ↔ (𝐵 ∈ ω → (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴))))
5 oveq1 5964 . . . . 5 (𝑥 = ∅ → (𝑥 ·o 𝐵) = (∅ ·o 𝐵))
6 oveq2 5965 . . . . 5 (𝑥 = ∅ → (𝐵 ·o 𝑥) = (𝐵 ·o ∅))
75, 6eqeq12d 2221 . . . 4 (𝑥 = ∅ → ((𝑥 ·o 𝐵) = (𝐵 ·o 𝑥) ↔ (∅ ·o 𝐵) = (𝐵 ·o ∅)))
8 oveq1 5964 . . . . 5 (𝑥 = 𝑦 → (𝑥 ·o 𝐵) = (𝑦 ·o 𝐵))
9 oveq2 5965 . . . . 5 (𝑥 = 𝑦 → (𝐵 ·o 𝑥) = (𝐵 ·o 𝑦))
108, 9eqeq12d 2221 . . . 4 (𝑥 = 𝑦 → ((𝑥 ·o 𝐵) = (𝐵 ·o 𝑥) ↔ (𝑦 ·o 𝐵) = (𝐵 ·o 𝑦)))
11 oveq1 5964 . . . . 5 (𝑥 = suc 𝑦 → (𝑥 ·o 𝐵) = (suc 𝑦 ·o 𝐵))
12 oveq2 5965 . . . . 5 (𝑥 = suc 𝑦 → (𝐵 ·o 𝑥) = (𝐵 ·o suc 𝑦))
1311, 12eqeq12d 2221 . . . 4 (𝑥 = suc 𝑦 → ((𝑥 ·o 𝐵) = (𝐵 ·o 𝑥) ↔ (suc 𝑦 ·o 𝐵) = (𝐵 ·o suc 𝑦)))
14 nnm0r 6578 . . . . 5 (𝐵 ∈ ω → (∅ ·o 𝐵) = ∅)
15 nnm0 6574 . . . . 5 (𝐵 ∈ ω → (𝐵 ·o ∅) = ∅)
1614, 15eqtr4d 2242 . . . 4 (𝐵 ∈ ω → (∅ ·o 𝐵) = (𝐵 ·o ∅))
17 oveq1 5964 . . . . . 6 ((𝑦 ·o 𝐵) = (𝐵 ·o 𝑦) → ((𝑦 ·o 𝐵) +o 𝐵) = ((𝐵 ·o 𝑦) +o 𝐵))
18 nnmsucr 6587 . . . . . . 7 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝑦 ·o 𝐵) = ((𝑦 ·o 𝐵) +o 𝐵))
19 nnmsuc 6576 . . . . . . . 8 ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 ·o suc 𝑦) = ((𝐵 ·o 𝑦) +o 𝐵))
2019ancoms 268 . . . . . . 7 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 ·o suc 𝑦) = ((𝐵 ·o 𝑦) +o 𝐵))
2118, 20eqeq12d 2221 . . . . . 6 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → ((suc 𝑦 ·o 𝐵) = (𝐵 ·o suc 𝑦) ↔ ((𝑦 ·o 𝐵) +o 𝐵) = ((𝐵 ·o 𝑦) +o 𝐵)))
2217, 21imbitrrid 156 . . . . 5 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → ((𝑦 ·o 𝐵) = (𝐵 ·o 𝑦) → (suc 𝑦 ·o 𝐵) = (𝐵 ·o suc 𝑦)))
2322ex 115 . . . 4 (𝑦 ∈ ω → (𝐵 ∈ ω → ((𝑦 ·o 𝐵) = (𝐵 ·o 𝑦) → (suc 𝑦 ·o 𝐵) = (𝐵 ·o suc 𝑦))))
247, 10, 13, 16, 23finds2 4657 . . 3 (𝑥 ∈ ω → (𝐵 ∈ ω → (𝑥 ·o 𝐵) = (𝐵 ·o 𝑥)))
254, 24vtoclga 2841 . 2 (𝐴 ∈ ω → (𝐵 ∈ ω → (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴)))
2625imp 124 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  c0 3464  suc csuc 4420  ωcom 4646  (class class class)co 5957   +o coa 6512   ·o comu 6513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-irdg 6469  df-oadd 6519  df-omul 6520
This theorem is referenced by:  nndir  6589  nn2m  6626  mulcompig  7464  enq0sym  7565  enq0ref  7566  enq0tr  7567  addcmpblnq0  7576  mulcmpblnq0  7577  mulcanenq0ec  7578  nnanq0  7591  distrnq0  7592  mulcomnq0  7593  addassnq0  7595  nq02m  7598
  Copyright terms: Public domain W3C validator