| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnmcom | GIF version | ||
| Description: Multiplication of natural numbers is commutative. Theorem 4K(5) of [Enderton] p. 81. (Contributed by NM, 21-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| nnmcom | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 5964 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ·o 𝐵) = (𝐴 ·o 𝐵)) | |
| 2 | oveq2 5965 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐵 ·o 𝑥) = (𝐵 ·o 𝐴)) | |
| 3 | 1, 2 | eqeq12d 2221 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ·o 𝐵) = (𝐵 ·o 𝑥) ↔ (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴))) |
| 4 | 3 | imbi2d 230 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝐵 ∈ ω → (𝑥 ·o 𝐵) = (𝐵 ·o 𝑥)) ↔ (𝐵 ∈ ω → (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴)))) |
| 5 | oveq1 5964 | . . . . 5 ⊢ (𝑥 = ∅ → (𝑥 ·o 𝐵) = (∅ ·o 𝐵)) | |
| 6 | oveq2 5965 | . . . . 5 ⊢ (𝑥 = ∅ → (𝐵 ·o 𝑥) = (𝐵 ·o ∅)) | |
| 7 | 5, 6 | eqeq12d 2221 | . . . 4 ⊢ (𝑥 = ∅ → ((𝑥 ·o 𝐵) = (𝐵 ·o 𝑥) ↔ (∅ ·o 𝐵) = (𝐵 ·o ∅))) |
| 8 | oveq1 5964 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 ·o 𝐵) = (𝑦 ·o 𝐵)) | |
| 9 | oveq2 5965 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐵 ·o 𝑥) = (𝐵 ·o 𝑦)) | |
| 10 | 8, 9 | eqeq12d 2221 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝑥 ·o 𝐵) = (𝐵 ·o 𝑥) ↔ (𝑦 ·o 𝐵) = (𝐵 ·o 𝑦))) |
| 11 | oveq1 5964 | . . . . 5 ⊢ (𝑥 = suc 𝑦 → (𝑥 ·o 𝐵) = (suc 𝑦 ·o 𝐵)) | |
| 12 | oveq2 5965 | . . . . 5 ⊢ (𝑥 = suc 𝑦 → (𝐵 ·o 𝑥) = (𝐵 ·o suc 𝑦)) | |
| 13 | 11, 12 | eqeq12d 2221 | . . . 4 ⊢ (𝑥 = suc 𝑦 → ((𝑥 ·o 𝐵) = (𝐵 ·o 𝑥) ↔ (suc 𝑦 ·o 𝐵) = (𝐵 ·o suc 𝑦))) |
| 14 | nnm0r 6578 | . . . . 5 ⊢ (𝐵 ∈ ω → (∅ ·o 𝐵) = ∅) | |
| 15 | nnm0 6574 | . . . . 5 ⊢ (𝐵 ∈ ω → (𝐵 ·o ∅) = ∅) | |
| 16 | 14, 15 | eqtr4d 2242 | . . . 4 ⊢ (𝐵 ∈ ω → (∅ ·o 𝐵) = (𝐵 ·o ∅)) |
| 17 | oveq1 5964 | . . . . . 6 ⊢ ((𝑦 ·o 𝐵) = (𝐵 ·o 𝑦) → ((𝑦 ·o 𝐵) +o 𝐵) = ((𝐵 ·o 𝑦) +o 𝐵)) | |
| 18 | nnmsucr 6587 | . . . . . . 7 ⊢ ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝑦 ·o 𝐵) = ((𝑦 ·o 𝐵) +o 𝐵)) | |
| 19 | nnmsuc 6576 | . . . . . . . 8 ⊢ ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 ·o suc 𝑦) = ((𝐵 ·o 𝑦) +o 𝐵)) | |
| 20 | 19 | ancoms 268 | . . . . . . 7 ⊢ ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 ·o suc 𝑦) = ((𝐵 ·o 𝑦) +o 𝐵)) |
| 21 | 18, 20 | eqeq12d 2221 | . . . . . 6 ⊢ ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → ((suc 𝑦 ·o 𝐵) = (𝐵 ·o suc 𝑦) ↔ ((𝑦 ·o 𝐵) +o 𝐵) = ((𝐵 ·o 𝑦) +o 𝐵))) |
| 22 | 17, 21 | imbitrrid 156 | . . . . 5 ⊢ ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → ((𝑦 ·o 𝐵) = (𝐵 ·o 𝑦) → (suc 𝑦 ·o 𝐵) = (𝐵 ·o suc 𝑦))) |
| 23 | 22 | ex 115 | . . . 4 ⊢ (𝑦 ∈ ω → (𝐵 ∈ ω → ((𝑦 ·o 𝐵) = (𝐵 ·o 𝑦) → (suc 𝑦 ·o 𝐵) = (𝐵 ·o suc 𝑦)))) |
| 24 | 7, 10, 13, 16, 23 | finds2 4657 | . . 3 ⊢ (𝑥 ∈ ω → (𝐵 ∈ ω → (𝑥 ·o 𝐵) = (𝐵 ·o 𝑥))) |
| 25 | 4, 24 | vtoclga 2841 | . 2 ⊢ (𝐴 ∈ ω → (𝐵 ∈ ω → (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴))) |
| 26 | 25 | imp 124 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ∅c0 3464 suc csuc 4420 ωcom 4646 (class class class)co 5957 +o coa 6512 ·o comu 6513 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-iord 4421 df-on 4423 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-irdg 6469 df-oadd 6519 df-omul 6520 |
| This theorem is referenced by: nndir 6589 nn2m 6626 mulcompig 7464 enq0sym 7565 enq0ref 7566 enq0tr 7567 addcmpblnq0 7576 mulcmpblnq0 7577 mulcanenq0ec 7578 nnanq0 7591 distrnq0 7592 mulcomnq0 7593 addassnq0 7595 nq02m 7598 |
| Copyright terms: Public domain | W3C validator |