| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnmcom | GIF version | ||
| Description: Multiplication of natural numbers is commutative. Theorem 4K(5) of [Enderton] p. 81. (Contributed by NM, 21-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| nnmcom | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 5929 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ·o 𝐵) = (𝐴 ·o 𝐵)) | |
| 2 | oveq2 5930 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐵 ·o 𝑥) = (𝐵 ·o 𝐴)) | |
| 3 | 1, 2 | eqeq12d 2211 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ·o 𝐵) = (𝐵 ·o 𝑥) ↔ (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴))) |
| 4 | 3 | imbi2d 230 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝐵 ∈ ω → (𝑥 ·o 𝐵) = (𝐵 ·o 𝑥)) ↔ (𝐵 ∈ ω → (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴)))) |
| 5 | oveq1 5929 | . . . . 5 ⊢ (𝑥 = ∅ → (𝑥 ·o 𝐵) = (∅ ·o 𝐵)) | |
| 6 | oveq2 5930 | . . . . 5 ⊢ (𝑥 = ∅ → (𝐵 ·o 𝑥) = (𝐵 ·o ∅)) | |
| 7 | 5, 6 | eqeq12d 2211 | . . . 4 ⊢ (𝑥 = ∅ → ((𝑥 ·o 𝐵) = (𝐵 ·o 𝑥) ↔ (∅ ·o 𝐵) = (𝐵 ·o ∅))) |
| 8 | oveq1 5929 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 ·o 𝐵) = (𝑦 ·o 𝐵)) | |
| 9 | oveq2 5930 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝐵 ·o 𝑥) = (𝐵 ·o 𝑦)) | |
| 10 | 8, 9 | eqeq12d 2211 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝑥 ·o 𝐵) = (𝐵 ·o 𝑥) ↔ (𝑦 ·o 𝐵) = (𝐵 ·o 𝑦))) |
| 11 | oveq1 5929 | . . . . 5 ⊢ (𝑥 = suc 𝑦 → (𝑥 ·o 𝐵) = (suc 𝑦 ·o 𝐵)) | |
| 12 | oveq2 5930 | . . . . 5 ⊢ (𝑥 = suc 𝑦 → (𝐵 ·o 𝑥) = (𝐵 ·o suc 𝑦)) | |
| 13 | 11, 12 | eqeq12d 2211 | . . . 4 ⊢ (𝑥 = suc 𝑦 → ((𝑥 ·o 𝐵) = (𝐵 ·o 𝑥) ↔ (suc 𝑦 ·o 𝐵) = (𝐵 ·o suc 𝑦))) |
| 14 | nnm0r 6537 | . . . . 5 ⊢ (𝐵 ∈ ω → (∅ ·o 𝐵) = ∅) | |
| 15 | nnm0 6533 | . . . . 5 ⊢ (𝐵 ∈ ω → (𝐵 ·o ∅) = ∅) | |
| 16 | 14, 15 | eqtr4d 2232 | . . . 4 ⊢ (𝐵 ∈ ω → (∅ ·o 𝐵) = (𝐵 ·o ∅)) |
| 17 | oveq1 5929 | . . . . . 6 ⊢ ((𝑦 ·o 𝐵) = (𝐵 ·o 𝑦) → ((𝑦 ·o 𝐵) +o 𝐵) = ((𝐵 ·o 𝑦) +o 𝐵)) | |
| 18 | nnmsucr 6546 | . . . . . . 7 ⊢ ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝑦 ·o 𝐵) = ((𝑦 ·o 𝐵) +o 𝐵)) | |
| 19 | nnmsuc 6535 | . . . . . . . 8 ⊢ ((𝐵 ∈ ω ∧ 𝑦 ∈ ω) → (𝐵 ·o suc 𝑦) = ((𝐵 ·o 𝑦) +o 𝐵)) | |
| 20 | 19 | ancoms 268 | . . . . . . 7 ⊢ ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵 ·o suc 𝑦) = ((𝐵 ·o 𝑦) +o 𝐵)) |
| 21 | 18, 20 | eqeq12d 2211 | . . . . . 6 ⊢ ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → ((suc 𝑦 ·o 𝐵) = (𝐵 ·o suc 𝑦) ↔ ((𝑦 ·o 𝐵) +o 𝐵) = ((𝐵 ·o 𝑦) +o 𝐵))) |
| 22 | 17, 21 | imbitrrid 156 | . . . . 5 ⊢ ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → ((𝑦 ·o 𝐵) = (𝐵 ·o 𝑦) → (suc 𝑦 ·o 𝐵) = (𝐵 ·o suc 𝑦))) |
| 23 | 22 | ex 115 | . . . 4 ⊢ (𝑦 ∈ ω → (𝐵 ∈ ω → ((𝑦 ·o 𝐵) = (𝐵 ·o 𝑦) → (suc 𝑦 ·o 𝐵) = (𝐵 ·o suc 𝑦)))) |
| 24 | 7, 10, 13, 16, 23 | finds2 4637 | . . 3 ⊢ (𝑥 ∈ ω → (𝐵 ∈ ω → (𝑥 ·o 𝐵) = (𝐵 ·o 𝑥))) |
| 25 | 4, 24 | vtoclga 2830 | . 2 ⊢ (𝐴 ∈ ω → (𝐵 ∈ ω → (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴))) |
| 26 | 25 | imp 124 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ·o 𝐵) = (𝐵 ·o 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∅c0 3450 suc csuc 4400 ωcom 4626 (class class class)co 5922 +o coa 6471 ·o comu 6472 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-oadd 6478 df-omul 6479 |
| This theorem is referenced by: nndir 6548 nn2m 6585 mulcompig 7398 enq0sym 7499 enq0ref 7500 enq0tr 7501 addcmpblnq0 7510 mulcmpblnq0 7511 mulcanenq0ec 7512 nnanq0 7525 distrnq0 7526 mulcomnq0 7527 addassnq0 7529 nq02m 7532 |
| Copyright terms: Public domain | W3C validator |