| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opprrngbg | Unicode version | ||
| Description: A set is a non-unital ring if and only if its opposite is a non-unital ring. Bidirectional form of opprrng 14040. (Contributed by AV, 15-Feb-2025.) |
| Ref | Expression |
|---|---|
| opprbas.1 |
|
| Ref | Expression |
|---|---|
| opprrngbg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opprbas.1 |
. . 3
| |
| 2 | 1 | opprrng 14040 |
. 2
|
| 3 | eqid 2229 |
. . . 4
| |
| 4 | 3 | opprrng 14040 |
. . 3
|
| 5 | eqid 2229 |
. . . . 5
| |
| 6 | 5 | a1i 9 |
. . . 4
|
| 7 | 1, 5 | opprbasg 14038 |
. . . . 5
|
| 8 | 1 | opprex 14036 |
. . . . . 6
|
| 9 | eqid 2229 |
. . . . . . 7
| |
| 10 | 3, 9 | opprbasg 14038 |
. . . . . 6
|
| 11 | 8, 10 | syl 14 |
. . . . 5
|
| 12 | 7, 11 | eqtrd 2262 |
. . . 4
|
| 13 | eqid 2229 |
. . . . . . 7
| |
| 14 | 1, 13 | oppraddg 14039 |
. . . . . 6
|
| 15 | eqid 2229 |
. . . . . . . 8
| |
| 16 | 3, 15 | oppraddg 14039 |
. . . . . . 7
|
| 17 | 8, 16 | syl 14 |
. . . . . 6
|
| 18 | 14, 17 | eqtrd 2262 |
. . . . 5
|
| 19 | 18 | oveqdr 6029 |
. . . 4
|
| 20 | vex 2802 |
. . . . . . . 8
| |
| 21 | 20 | a1i 9 |
. . . . . . 7
|
| 22 | vex 2802 |
. . . . . . . 8
| |
| 23 | 22 | a1i 9 |
. . . . . . 7
|
| 24 | eqid 2229 |
. . . . . . . 8
| |
| 25 | eqid 2229 |
. . . . . . . 8
| |
| 26 | 9, 24, 3, 25 | opprmulg 14034 |
. . . . . . 7
|
| 27 | 8, 21, 23, 26 | syl3anc 1271 |
. . . . . 6
|
| 28 | 27 | adantr 276 |
. . . . 5
|
| 29 | simpl 109 |
. . . . . 6
| |
| 30 | simprr 531 |
. . . . . 6
| |
| 31 | simprl 529 |
. . . . . 6
| |
| 32 | eqid 2229 |
. . . . . . 7
| |
| 33 | 5, 32, 1, 24 | opprmulg 14034 |
. . . . . 6
|
| 34 | 29, 30, 31, 33 | syl3anc 1271 |
. . . . 5
|
| 35 | 28, 34 | eqtr2d 2263 |
. . . 4
|
| 36 | 6, 12, 19, 35 | rngpropd 13918 |
. . 3
|
| 37 | 4, 36 | imbitrrid 156 |
. 2
|
| 38 | 2, 37 | impbid2 143 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-pre-ltirr 8111 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-tpos 6391 df-pnf 8183 df-mnf 8184 df-ltxr 8186 df-inn 9111 df-2 9169 df-3 9170 df-ndx 13035 df-slot 13036 df-base 13038 df-sets 13039 df-plusg 13123 df-mulr 13124 df-0g 13291 df-mgm 13389 df-sgrp 13435 df-mnd 13450 df-grp 13536 df-cmn 13823 df-abl 13824 df-mgp 13884 df-rng 13896 df-oppr 14031 |
| This theorem is referenced by: opprsubrngg 14175 |
| Copyright terms: Public domain | W3C validator |