ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprrngbg Unicode version

Theorem opprrngbg 13453
Description: A set is a non-unital ring if and only if its opposite is a non-unital ring. Bidirectional form of opprrng 13452. (Contributed by AV, 15-Feb-2025.)
Hypothesis
Ref Expression
opprbas.1  |-  O  =  (oppr
`  R )
Assertion
Ref Expression
opprrngbg  |-  ( R  e.  V  ->  ( R  e. Rng  <->  O  e. Rng )
)

Proof of Theorem opprrngbg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprbas.1 . . 3  |-  O  =  (oppr
`  R )
21opprrng 13452 . 2  |-  ( R  e. Rng  ->  O  e. Rng )
3 eqid 2189 . . . 4  |-  (oppr `  O
)  =  (oppr `  O
)
43opprrng 13452 . . 3  |-  ( O  e. Rng  ->  (oppr
`  O )  e. Rng )
5 eqid 2189 . . . . 5  |-  ( Base `  R )  =  (
Base `  R )
65a1i 9 . . . 4  |-  ( R  e.  V  ->  ( Base `  R )  =  ( Base `  R
) )
71, 5opprbasg 13450 . . . . 5  |-  ( R  e.  V  ->  ( Base `  R )  =  ( Base `  O
) )
81opprex 13448 . . . . . 6  |-  ( R  e.  V  ->  O  e.  _V )
9 eqid 2189 . . . . . . 7  |-  ( Base `  O )  =  (
Base `  O )
103, 9opprbasg 13450 . . . . . 6  |-  ( O  e.  _V  ->  ( Base `  O )  =  ( Base `  (oppr `  O
) ) )
118, 10syl 14 . . . . 5  |-  ( R  e.  V  ->  ( Base `  O )  =  ( Base `  (oppr `  O
) ) )
127, 11eqtrd 2222 . . . 4  |-  ( R  e.  V  ->  ( Base `  R )  =  ( Base `  (oppr `  O
) ) )
13 eqid 2189 . . . . . . 7  |-  ( +g  `  R )  =  ( +g  `  R )
141, 13oppraddg 13451 . . . . . 6  |-  ( R  e.  V  ->  ( +g  `  R )  =  ( +g  `  O
) )
15 eqid 2189 . . . . . . . 8  |-  ( +g  `  O )  =  ( +g  `  O )
163, 15oppraddg 13451 . . . . . . 7  |-  ( O  e.  _V  ->  ( +g  `  O )  =  ( +g  `  (oppr `  O
) ) )
178, 16syl 14 . . . . . 6  |-  ( R  e.  V  ->  ( +g  `  O )  =  ( +g  `  (oppr `  O
) ) )
1814, 17eqtrd 2222 . . . . 5  |-  ( R  e.  V  ->  ( +g  `  R )  =  ( +g  `  (oppr `  O
) ) )
1918oveqdr 5928 . . . 4  |-  ( ( R  e.  V  /\  ( x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) ) )  ->  ( x ( +g  `  R ) y )  =  ( x ( +g  `  (oppr `  O
) ) y ) )
20 vex 2755 . . . . . . . 8  |-  x  e. 
_V
2120a1i 9 . . . . . . 7  |-  ( R  e.  V  ->  x  e.  _V )
22 vex 2755 . . . . . . . 8  |-  y  e. 
_V
2322a1i 9 . . . . . . 7  |-  ( R  e.  V  ->  y  e.  _V )
24 eqid 2189 . . . . . . . 8  |-  ( .r
`  O )  =  ( .r `  O
)
25 eqid 2189 . . . . . . . 8  |-  ( .r
`  (oppr
`  O ) )  =  ( .r `  (oppr `  O ) )
269, 24, 3, 25opprmulg 13446 . . . . . . 7  |-  ( ( O  e.  _V  /\  x  e.  _V  /\  y  e.  _V )  ->  (
x ( .r `  (oppr `  O ) ) y )  =  ( y ( .r `  O
) x ) )
278, 21, 23, 26syl3anc 1249 . . . . . 6  |-  ( R  e.  V  ->  (
x ( .r `  (oppr `  O ) ) y )  =  ( y ( .r `  O
) x ) )
2827adantr 276 . . . . 5  |-  ( ( R  e.  V  /\  ( x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) ) )  ->  ( x ( .r `  (oppr `  O
) ) y )  =  ( y ( .r `  O ) x ) )
29 simpl 109 . . . . . 6  |-  ( ( R  e.  V  /\  ( x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) ) )  ->  R  e.  V
)
30 simprr 531 . . . . . 6  |-  ( ( R  e.  V  /\  ( x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) ) )  ->  y  e.  (
Base `  R )
)
31 simprl 529 . . . . . 6  |-  ( ( R  e.  V  /\  ( x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) ) )  ->  x  e.  (
Base `  R )
)
32 eqid 2189 . . . . . . 7  |-  ( .r
`  R )  =  ( .r `  R
)
335, 32, 1, 24opprmulg 13446 . . . . . 6  |-  ( ( R  e.  V  /\  y  e.  ( Base `  R )  /\  x  e.  ( Base `  R
) )  ->  (
y ( .r `  O ) x )  =  ( x ( .r `  R ) y ) )
3429, 30, 31, 33syl3anc 1249 . . . . 5  |-  ( ( R  e.  V  /\  ( x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) ) )  ->  ( y ( .r `  O ) x )  =  ( x ( .r `  R ) y ) )
3528, 34eqtr2d 2223 . . . 4  |-  ( ( R  e.  V  /\  ( x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) ) )  ->  ( x ( .r `  R ) y )  =  ( x ( .r `  (oppr `  O ) ) y ) )
366, 12, 19, 35rngpropd 13334 . . 3  |-  ( R  e.  V  ->  ( R  e. Rng  <->  (oppr
`  O )  e. Rng ) )
374, 36imbitrrid 156 . 2  |-  ( R  e.  V  ->  ( O  e. Rng  ->  R  e. Rng ) )
382, 37impbid2 143 1  |-  ( R  e.  V  ->  ( R  e. Rng  <->  O  e. Rng )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2160   _Vcvv 2752   ` cfv 5238  (class class class)co 5900   Basecbs 12523   +g cplusg 12600   .rcmulr 12601  Rngcrng 13311  opprcoppr 13442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4139  ax-nul 4147  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-cnex 7937  ax-resscn 7938  ax-1cn 7939  ax-1re 7940  ax-icn 7941  ax-addcl 7942  ax-addrcl 7943  ax-mulcl 7944  ax-addcom 7946  ax-addass 7948  ax-i2m1 7951  ax-0lt1 7952  ax-0id 7954  ax-rnegex 7955  ax-pre-ltirr 7958  ax-pre-lttrn 7960  ax-pre-ltadd 7962
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-int 3863  df-br 4022  df-opab 4083  df-mpt 4084  df-id 4314  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-fv 5246  df-riota 5855  df-ov 5903  df-oprab 5904  df-mpo 5905  df-tpos 6274  df-pnf 8029  df-mnf 8030  df-ltxr 8032  df-inn 8955  df-2 9013  df-3 9014  df-ndx 12526  df-slot 12527  df-base 12529  df-sets 12530  df-plusg 12613  df-mulr 12614  df-0g 12774  df-mgm 12843  df-sgrp 12888  df-mnd 12901  df-grp 12971  df-cmn 13250  df-abl 13251  df-mgp 13300  df-rng 13312  df-oppr 13443
This theorem is referenced by:  opprsubrngg  13583
  Copyright terms: Public domain W3C validator