ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprrngbg Unicode version

Theorem opprrngbg 13873
Description: A set is a non-unital ring if and only if its opposite is a non-unital ring. Bidirectional form of opprrng 13872. (Contributed by AV, 15-Feb-2025.)
Hypothesis
Ref Expression
opprbas.1  |-  O  =  (oppr
`  R )
Assertion
Ref Expression
opprrngbg  |-  ( R  e.  V  ->  ( R  e. Rng  <->  O  e. Rng )
)

Proof of Theorem opprrngbg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprbas.1 . . 3  |-  O  =  (oppr
`  R )
21opprrng 13872 . 2  |-  ( R  e. Rng  ->  O  e. Rng )
3 eqid 2205 . . . 4  |-  (oppr `  O
)  =  (oppr `  O
)
43opprrng 13872 . . 3  |-  ( O  e. Rng  ->  (oppr
`  O )  e. Rng )
5 eqid 2205 . . . . 5  |-  ( Base `  R )  =  (
Base `  R )
65a1i 9 . . . 4  |-  ( R  e.  V  ->  ( Base `  R )  =  ( Base `  R
) )
71, 5opprbasg 13870 . . . . 5  |-  ( R  e.  V  ->  ( Base `  R )  =  ( Base `  O
) )
81opprex 13868 . . . . . 6  |-  ( R  e.  V  ->  O  e.  _V )
9 eqid 2205 . . . . . . 7  |-  ( Base `  O )  =  (
Base `  O )
103, 9opprbasg 13870 . . . . . 6  |-  ( O  e.  _V  ->  ( Base `  O )  =  ( Base `  (oppr `  O
) ) )
118, 10syl 14 . . . . 5  |-  ( R  e.  V  ->  ( Base `  O )  =  ( Base `  (oppr `  O
) ) )
127, 11eqtrd 2238 . . . 4  |-  ( R  e.  V  ->  ( Base `  R )  =  ( Base `  (oppr `  O
) ) )
13 eqid 2205 . . . . . . 7  |-  ( +g  `  R )  =  ( +g  `  R )
141, 13oppraddg 13871 . . . . . 6  |-  ( R  e.  V  ->  ( +g  `  R )  =  ( +g  `  O
) )
15 eqid 2205 . . . . . . . 8  |-  ( +g  `  O )  =  ( +g  `  O )
163, 15oppraddg 13871 . . . . . . 7  |-  ( O  e.  _V  ->  ( +g  `  O )  =  ( +g  `  (oppr `  O
) ) )
178, 16syl 14 . . . . . 6  |-  ( R  e.  V  ->  ( +g  `  O )  =  ( +g  `  (oppr `  O
) ) )
1814, 17eqtrd 2238 . . . . 5  |-  ( R  e.  V  ->  ( +g  `  R )  =  ( +g  `  (oppr `  O
) ) )
1918oveqdr 5974 . . . 4  |-  ( ( R  e.  V  /\  ( x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) ) )  ->  ( x ( +g  `  R ) y )  =  ( x ( +g  `  (oppr `  O
) ) y ) )
20 vex 2775 . . . . . . . 8  |-  x  e. 
_V
2120a1i 9 . . . . . . 7  |-  ( R  e.  V  ->  x  e.  _V )
22 vex 2775 . . . . . . . 8  |-  y  e. 
_V
2322a1i 9 . . . . . . 7  |-  ( R  e.  V  ->  y  e.  _V )
24 eqid 2205 . . . . . . . 8  |-  ( .r
`  O )  =  ( .r `  O
)
25 eqid 2205 . . . . . . . 8  |-  ( .r
`  (oppr
`  O ) )  =  ( .r `  (oppr `  O ) )
269, 24, 3, 25opprmulg 13866 . . . . . . 7  |-  ( ( O  e.  _V  /\  x  e.  _V  /\  y  e.  _V )  ->  (
x ( .r `  (oppr `  O ) ) y )  =  ( y ( .r `  O
) x ) )
278, 21, 23, 26syl3anc 1250 . . . . . 6  |-  ( R  e.  V  ->  (
x ( .r `  (oppr `  O ) ) y )  =  ( y ( .r `  O
) x ) )
2827adantr 276 . . . . 5  |-  ( ( R  e.  V  /\  ( x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) ) )  ->  ( x ( .r `  (oppr `  O
) ) y )  =  ( y ( .r `  O ) x ) )
29 simpl 109 . . . . . 6  |-  ( ( R  e.  V  /\  ( x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) ) )  ->  R  e.  V
)
30 simprr 531 . . . . . 6  |-  ( ( R  e.  V  /\  ( x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) ) )  ->  y  e.  (
Base `  R )
)
31 simprl 529 . . . . . 6  |-  ( ( R  e.  V  /\  ( x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) ) )  ->  x  e.  (
Base `  R )
)
32 eqid 2205 . . . . . . 7  |-  ( .r
`  R )  =  ( .r `  R
)
335, 32, 1, 24opprmulg 13866 . . . . . 6  |-  ( ( R  e.  V  /\  y  e.  ( Base `  R )  /\  x  e.  ( Base `  R
) )  ->  (
y ( .r `  O ) x )  =  ( x ( .r `  R ) y ) )
3429, 30, 31, 33syl3anc 1250 . . . . 5  |-  ( ( R  e.  V  /\  ( x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) ) )  ->  ( y ( .r `  O ) x )  =  ( x ( .r `  R ) y ) )
3528, 34eqtr2d 2239 . . . 4  |-  ( ( R  e.  V  /\  ( x  e.  ( Base `  R )  /\  y  e.  ( Base `  R ) ) )  ->  ( x ( .r `  R ) y )  =  ( x ( .r `  (oppr `  O ) ) y ) )
366, 12, 19, 35rngpropd 13750 . . 3  |-  ( R  e.  V  ->  ( R  e. Rng  <->  (oppr
`  O )  e. Rng ) )
374, 36imbitrrid 156 . 2  |-  ( R  e.  V  ->  ( O  e. Rng  ->  R  e. Rng ) )
382, 37impbid2 143 1  |-  ( R  e.  V  ->  ( R  e. Rng  <->  O  e. Rng )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   _Vcvv 2772   ` cfv 5272  (class class class)co 5946   Basecbs 12865   +g cplusg 12942   .rcmulr 12943  Rngcrng 13727  opprcoppr 13862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-i2m1 8032  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-pre-ltirr 8039  ax-pre-lttrn 8041  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-tpos 6333  df-pnf 8111  df-mnf 8112  df-ltxr 8114  df-inn 9039  df-2 9097  df-3 9098  df-ndx 12868  df-slot 12869  df-base 12871  df-sets 12872  df-plusg 12955  df-mulr 12956  df-0g 13123  df-mgm 13221  df-sgrp 13267  df-mnd 13282  df-grp 13368  df-cmn 13655  df-abl 13656  df-mgp 13716  df-rng 13728  df-oppr 13863
This theorem is referenced by:  opprsubrngg  14006
  Copyright terms: Public domain W3C validator