| Step | Hyp | Ref
| Expression |
| 1 | | opprbas.1 |
. . 3
⊢ 𝑂 =
(oppr‘𝑅) |
| 2 | 1 | opprrng 13633 |
. 2
⊢ (𝑅 ∈ Rng → 𝑂 ∈ Rng) |
| 3 | | eqid 2196 |
. . . 4
⊢
(oppr‘𝑂) = (oppr‘𝑂) |
| 4 | 3 | opprrng 13633 |
. . 3
⊢ (𝑂 ∈ Rng →
(oppr‘𝑂) ∈ Rng) |
| 5 | | eqid 2196 |
. . . . 5
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 6 | 5 | a1i 9 |
. . . 4
⊢ (𝑅 ∈ 𝑉 → (Base‘𝑅) = (Base‘𝑅)) |
| 7 | 1, 5 | opprbasg 13631 |
. . . . 5
⊢ (𝑅 ∈ 𝑉 → (Base‘𝑅) = (Base‘𝑂)) |
| 8 | 1 | opprex 13629 |
. . . . . 6
⊢ (𝑅 ∈ 𝑉 → 𝑂 ∈ V) |
| 9 | | eqid 2196 |
. . . . . . 7
⊢
(Base‘𝑂) =
(Base‘𝑂) |
| 10 | 3, 9 | opprbasg 13631 |
. . . . . 6
⊢ (𝑂 ∈ V →
(Base‘𝑂) =
(Base‘(oppr‘𝑂))) |
| 11 | 8, 10 | syl 14 |
. . . . 5
⊢ (𝑅 ∈ 𝑉 → (Base‘𝑂) =
(Base‘(oppr‘𝑂))) |
| 12 | 7, 11 | eqtrd 2229 |
. . . 4
⊢ (𝑅 ∈ 𝑉 → (Base‘𝑅) =
(Base‘(oppr‘𝑂))) |
| 13 | | eqid 2196 |
. . . . . . 7
⊢
(+g‘𝑅) = (+g‘𝑅) |
| 14 | 1, 13 | oppraddg 13632 |
. . . . . 6
⊢ (𝑅 ∈ 𝑉 → (+g‘𝑅) = (+g‘𝑂)) |
| 15 | | eqid 2196 |
. . . . . . . 8
⊢
(+g‘𝑂) = (+g‘𝑂) |
| 16 | 3, 15 | oppraddg 13632 |
. . . . . . 7
⊢ (𝑂 ∈ V →
(+g‘𝑂) =
(+g‘(oppr‘𝑂))) |
| 17 | 8, 16 | syl 14 |
. . . . . 6
⊢ (𝑅 ∈ 𝑉 → (+g‘𝑂) =
(+g‘(oppr‘𝑂))) |
| 18 | 14, 17 | eqtrd 2229 |
. . . . 5
⊢ (𝑅 ∈ 𝑉 → (+g‘𝑅) =
(+g‘(oppr‘𝑂))) |
| 19 | 18 | oveqdr 5950 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘(oppr‘𝑂))𝑦)) |
| 20 | | vex 2766 |
. . . . . . . 8
⊢ 𝑥 ∈ V |
| 21 | 20 | a1i 9 |
. . . . . . 7
⊢ (𝑅 ∈ 𝑉 → 𝑥 ∈ V) |
| 22 | | vex 2766 |
. . . . . . . 8
⊢ 𝑦 ∈ V |
| 23 | 22 | a1i 9 |
. . . . . . 7
⊢ (𝑅 ∈ 𝑉 → 𝑦 ∈ V) |
| 24 | | eqid 2196 |
. . . . . . . 8
⊢
(.r‘𝑂) = (.r‘𝑂) |
| 25 | | eqid 2196 |
. . . . . . . 8
⊢
(.r‘(oppr‘𝑂)) =
(.r‘(oppr‘𝑂)) |
| 26 | 9, 24, 3, 25 | opprmulg 13627 |
. . . . . . 7
⊢ ((𝑂 ∈ V ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥(.r‘(oppr‘𝑂))𝑦) = (𝑦(.r‘𝑂)𝑥)) |
| 27 | 8, 21, 23, 26 | syl3anc 1249 |
. . . . . 6
⊢ (𝑅 ∈ 𝑉 → (𝑥(.r‘(oppr‘𝑂))𝑦) = (𝑦(.r‘𝑂)𝑥)) |
| 28 | 27 | adantr 276 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r‘(oppr‘𝑂))𝑦) = (𝑦(.r‘𝑂)𝑥)) |
| 29 | | simpl 109 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑅 ∈ 𝑉) |
| 30 | | simprr 531 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑦 ∈ (Base‘𝑅)) |
| 31 | | simprl 529 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑥 ∈ (Base‘𝑅)) |
| 32 | | eqid 2196 |
. . . . . . 7
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 33 | 5, 32, 1, 24 | opprmulg 13627 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑦(.r‘𝑂)𝑥) = (𝑥(.r‘𝑅)𝑦)) |
| 34 | 29, 30, 31, 33 | syl3anc 1249 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑦(.r‘𝑂)𝑥) = (𝑥(.r‘𝑅)𝑦)) |
| 35 | 28, 34 | eqtr2d 2230 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r‘𝑅)𝑦) = (𝑥(.r‘(oppr‘𝑂))𝑦)) |
| 36 | 6, 12, 19, 35 | rngpropd 13511 |
. . 3
⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rng ↔
(oppr‘𝑂) ∈ Rng)) |
| 37 | 4, 36 | imbitrrid 156 |
. 2
⊢ (𝑅 ∈ 𝑉 → (𝑂 ∈ Rng → 𝑅 ∈ Rng)) |
| 38 | 2, 37 | impbid2 143 |
1
⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rng ↔ 𝑂 ∈ Rng)) |