ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprrngbg GIF version

Theorem opprrngbg 13574
Description: A set is a non-unital ring if and only if its opposite is a non-unital ring. Bidirectional form of opprrng 13573. (Contributed by AV, 15-Feb-2025.)
Hypothesis
Ref Expression
opprbas.1 𝑂 = (oppr𝑅)
Assertion
Ref Expression
opprrngbg (𝑅𝑉 → (𝑅 ∈ Rng ↔ 𝑂 ∈ Rng))

Proof of Theorem opprrngbg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprbas.1 . . 3 𝑂 = (oppr𝑅)
21opprrng 13573 . 2 (𝑅 ∈ Rng → 𝑂 ∈ Rng)
3 eqid 2193 . . . 4 (oppr𝑂) = (oppr𝑂)
43opprrng 13573 . . 3 (𝑂 ∈ Rng → (oppr𝑂) ∈ Rng)
5 eqid 2193 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
65a1i 9 . . . 4 (𝑅𝑉 → (Base‘𝑅) = (Base‘𝑅))
71, 5opprbasg 13571 . . . . 5 (𝑅𝑉 → (Base‘𝑅) = (Base‘𝑂))
81opprex 13569 . . . . . 6 (𝑅𝑉𝑂 ∈ V)
9 eqid 2193 . . . . . . 7 (Base‘𝑂) = (Base‘𝑂)
103, 9opprbasg 13571 . . . . . 6 (𝑂 ∈ V → (Base‘𝑂) = (Base‘(oppr𝑂)))
118, 10syl 14 . . . . 5 (𝑅𝑉 → (Base‘𝑂) = (Base‘(oppr𝑂)))
127, 11eqtrd 2226 . . . 4 (𝑅𝑉 → (Base‘𝑅) = (Base‘(oppr𝑂)))
13 eqid 2193 . . . . . . 7 (+g𝑅) = (+g𝑅)
141, 13oppraddg 13572 . . . . . 6 (𝑅𝑉 → (+g𝑅) = (+g𝑂))
15 eqid 2193 . . . . . . . 8 (+g𝑂) = (+g𝑂)
163, 15oppraddg 13572 . . . . . . 7 (𝑂 ∈ V → (+g𝑂) = (+g‘(oppr𝑂)))
178, 16syl 14 . . . . . 6 (𝑅𝑉 → (+g𝑂) = (+g‘(oppr𝑂)))
1814, 17eqtrd 2226 . . . . 5 (𝑅𝑉 → (+g𝑅) = (+g‘(oppr𝑂)))
1918oveqdr 5946 . . . 4 ((𝑅𝑉 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g𝑅)𝑦) = (𝑥(+g‘(oppr𝑂))𝑦))
20 vex 2763 . . . . . . . 8 𝑥 ∈ V
2120a1i 9 . . . . . . 7 (𝑅𝑉𝑥 ∈ V)
22 vex 2763 . . . . . . . 8 𝑦 ∈ V
2322a1i 9 . . . . . . 7 (𝑅𝑉𝑦 ∈ V)
24 eqid 2193 . . . . . . . 8 (.r𝑂) = (.r𝑂)
25 eqid 2193 . . . . . . . 8 (.r‘(oppr𝑂)) = (.r‘(oppr𝑂))
269, 24, 3, 25opprmulg 13567 . . . . . . 7 ((𝑂 ∈ V ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥(.r‘(oppr𝑂))𝑦) = (𝑦(.r𝑂)𝑥))
278, 21, 23, 26syl3anc 1249 . . . . . 6 (𝑅𝑉 → (𝑥(.r‘(oppr𝑂))𝑦) = (𝑦(.r𝑂)𝑥))
2827adantr 276 . . . . 5 ((𝑅𝑉 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r‘(oppr𝑂))𝑦) = (𝑦(.r𝑂)𝑥))
29 simpl 109 . . . . . 6 ((𝑅𝑉 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑅𝑉)
30 simprr 531 . . . . . 6 ((𝑅𝑉 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑦 ∈ (Base‘𝑅))
31 simprl 529 . . . . . 6 ((𝑅𝑉 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑥 ∈ (Base‘𝑅))
32 eqid 2193 . . . . . . 7 (.r𝑅) = (.r𝑅)
335, 32, 1, 24opprmulg 13567 . . . . . 6 ((𝑅𝑉𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑦(.r𝑂)𝑥) = (𝑥(.r𝑅)𝑦))
3429, 30, 31, 33syl3anc 1249 . . . . 5 ((𝑅𝑉 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑦(.r𝑂)𝑥) = (𝑥(.r𝑅)𝑦))
3528, 34eqtr2d 2227 . . . 4 ((𝑅𝑉 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r𝑅)𝑦) = (𝑥(.r‘(oppr𝑂))𝑦))
366, 12, 19, 35rngpropd 13451 . . 3 (𝑅𝑉 → (𝑅 ∈ Rng ↔ (oppr𝑂) ∈ Rng))
374, 36imbitrrid 156 . 2 (𝑅𝑉 → (𝑂 ∈ Rng → 𝑅 ∈ Rng))
382, 37impbid2 143 1 (𝑅𝑉 → (𝑅 ∈ Rng ↔ 𝑂 ∈ Rng))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  Vcvv 2760  cfv 5254  (class class class)co 5918  Basecbs 12618  +gcplusg 12695  .rcmulr 12696  Rngcrng 13428  opprcoppr 13563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-tpos 6298  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-plusg 12708  df-mulr 12709  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-cmn 13356  df-abl 13357  df-mgp 13417  df-rng 13429  df-oppr 13564
This theorem is referenced by:  opprsubrngg  13707
  Copyright terms: Public domain W3C validator