ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprrngbg GIF version

Theorem opprrngbg 13577
Description: A set is a non-unital ring if and only if its opposite is a non-unital ring. Bidirectional form of opprrng 13576. (Contributed by AV, 15-Feb-2025.)
Hypothesis
Ref Expression
opprbas.1 𝑂 = (oppr𝑅)
Assertion
Ref Expression
opprrngbg (𝑅𝑉 → (𝑅 ∈ Rng ↔ 𝑂 ∈ Rng))

Proof of Theorem opprrngbg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprbas.1 . . 3 𝑂 = (oppr𝑅)
21opprrng 13576 . 2 (𝑅 ∈ Rng → 𝑂 ∈ Rng)
3 eqid 2193 . . . 4 (oppr𝑂) = (oppr𝑂)
43opprrng 13576 . . 3 (𝑂 ∈ Rng → (oppr𝑂) ∈ Rng)
5 eqid 2193 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
65a1i 9 . . . 4 (𝑅𝑉 → (Base‘𝑅) = (Base‘𝑅))
71, 5opprbasg 13574 . . . . 5 (𝑅𝑉 → (Base‘𝑅) = (Base‘𝑂))
81opprex 13572 . . . . . 6 (𝑅𝑉𝑂 ∈ V)
9 eqid 2193 . . . . . . 7 (Base‘𝑂) = (Base‘𝑂)
103, 9opprbasg 13574 . . . . . 6 (𝑂 ∈ V → (Base‘𝑂) = (Base‘(oppr𝑂)))
118, 10syl 14 . . . . 5 (𝑅𝑉 → (Base‘𝑂) = (Base‘(oppr𝑂)))
127, 11eqtrd 2226 . . . 4 (𝑅𝑉 → (Base‘𝑅) = (Base‘(oppr𝑂)))
13 eqid 2193 . . . . . . 7 (+g𝑅) = (+g𝑅)
141, 13oppraddg 13575 . . . . . 6 (𝑅𝑉 → (+g𝑅) = (+g𝑂))
15 eqid 2193 . . . . . . . 8 (+g𝑂) = (+g𝑂)
163, 15oppraddg 13575 . . . . . . 7 (𝑂 ∈ V → (+g𝑂) = (+g‘(oppr𝑂)))
178, 16syl 14 . . . . . 6 (𝑅𝑉 → (+g𝑂) = (+g‘(oppr𝑂)))
1814, 17eqtrd 2226 . . . . 5 (𝑅𝑉 → (+g𝑅) = (+g‘(oppr𝑂)))
1918oveqdr 5947 . . . 4 ((𝑅𝑉 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g𝑅)𝑦) = (𝑥(+g‘(oppr𝑂))𝑦))
20 vex 2763 . . . . . . . 8 𝑥 ∈ V
2120a1i 9 . . . . . . 7 (𝑅𝑉𝑥 ∈ V)
22 vex 2763 . . . . . . . 8 𝑦 ∈ V
2322a1i 9 . . . . . . 7 (𝑅𝑉𝑦 ∈ V)
24 eqid 2193 . . . . . . . 8 (.r𝑂) = (.r𝑂)
25 eqid 2193 . . . . . . . 8 (.r‘(oppr𝑂)) = (.r‘(oppr𝑂))
269, 24, 3, 25opprmulg 13570 . . . . . . 7 ((𝑂 ∈ V ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥(.r‘(oppr𝑂))𝑦) = (𝑦(.r𝑂)𝑥))
278, 21, 23, 26syl3anc 1249 . . . . . 6 (𝑅𝑉 → (𝑥(.r‘(oppr𝑂))𝑦) = (𝑦(.r𝑂)𝑥))
2827adantr 276 . . . . 5 ((𝑅𝑉 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r‘(oppr𝑂))𝑦) = (𝑦(.r𝑂)𝑥))
29 simpl 109 . . . . . 6 ((𝑅𝑉 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑅𝑉)
30 simprr 531 . . . . . 6 ((𝑅𝑉 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑦 ∈ (Base‘𝑅))
31 simprl 529 . . . . . 6 ((𝑅𝑉 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑥 ∈ (Base‘𝑅))
32 eqid 2193 . . . . . . 7 (.r𝑅) = (.r𝑅)
335, 32, 1, 24opprmulg 13570 . . . . . 6 ((𝑅𝑉𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑦(.r𝑂)𝑥) = (𝑥(.r𝑅)𝑦))
3429, 30, 31, 33syl3anc 1249 . . . . 5 ((𝑅𝑉 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑦(.r𝑂)𝑥) = (𝑥(.r𝑅)𝑦))
3528, 34eqtr2d 2227 . . . 4 ((𝑅𝑉 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r𝑅)𝑦) = (𝑥(.r‘(oppr𝑂))𝑦))
366, 12, 19, 35rngpropd 13454 . . 3 (𝑅𝑉 → (𝑅 ∈ Rng ↔ (oppr𝑂) ∈ Rng))
374, 36imbitrrid 156 . 2 (𝑅𝑉 → (𝑂 ∈ Rng → 𝑅 ∈ Rng))
382, 37impbid2 143 1 (𝑅𝑉 → (𝑅 ∈ Rng ↔ 𝑂 ∈ Rng))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  Vcvv 2760  cfv 5255  (class class class)co 5919  Basecbs 12621  +gcplusg 12698  .rcmulr 12699  Rngcrng 13431  opprcoppr 13566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-tpos 6300  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-plusg 12711  df-mulr 12712  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-grp 13078  df-cmn 13359  df-abl 13360  df-mgp 13420  df-rng 13432  df-oppr 13567
This theorem is referenced by:  opprsubrngg  13710
  Copyright terms: Public domain W3C validator