Step | Hyp | Ref
| Expression |
1 | | opprbas.1 |
. . 3
⊢ 𝑂 =
(oppr‘𝑅) |
2 | 1 | opprrng 13427 |
. 2
⊢ (𝑅 ∈ Rng → 𝑂 ∈ Rng) |
3 | | eqid 2189 |
. . . 4
⊢
(oppr‘𝑂) = (oppr‘𝑂) |
4 | 3 | opprrng 13427 |
. . 3
⊢ (𝑂 ∈ Rng →
(oppr‘𝑂) ∈ Rng) |
5 | | eqid 2189 |
. . . . 5
⊢
(Base‘𝑅) =
(Base‘𝑅) |
6 | 5 | a1i 9 |
. . . 4
⊢ (𝑅 ∈ 𝑉 → (Base‘𝑅) = (Base‘𝑅)) |
7 | 1, 5 | opprbasg 13425 |
. . . . 5
⊢ (𝑅 ∈ 𝑉 → (Base‘𝑅) = (Base‘𝑂)) |
8 | 1 | opprex 13423 |
. . . . . 6
⊢ (𝑅 ∈ 𝑉 → 𝑂 ∈ V) |
9 | | eqid 2189 |
. . . . . . 7
⊢
(Base‘𝑂) =
(Base‘𝑂) |
10 | 3, 9 | opprbasg 13425 |
. . . . . 6
⊢ (𝑂 ∈ V →
(Base‘𝑂) =
(Base‘(oppr‘𝑂))) |
11 | 8, 10 | syl 14 |
. . . . 5
⊢ (𝑅 ∈ 𝑉 → (Base‘𝑂) =
(Base‘(oppr‘𝑂))) |
12 | 7, 11 | eqtrd 2222 |
. . . 4
⊢ (𝑅 ∈ 𝑉 → (Base‘𝑅) =
(Base‘(oppr‘𝑂))) |
13 | | eqid 2189 |
. . . . . . 7
⊢
(+g‘𝑅) = (+g‘𝑅) |
14 | 1, 13 | oppraddg 13426 |
. . . . . 6
⊢ (𝑅 ∈ 𝑉 → (+g‘𝑅) = (+g‘𝑂)) |
15 | | eqid 2189 |
. . . . . . . 8
⊢
(+g‘𝑂) = (+g‘𝑂) |
16 | 3, 15 | oppraddg 13426 |
. . . . . . 7
⊢ (𝑂 ∈ V →
(+g‘𝑂) =
(+g‘(oppr‘𝑂))) |
17 | 8, 16 | syl 14 |
. . . . . 6
⊢ (𝑅 ∈ 𝑉 → (+g‘𝑂) =
(+g‘(oppr‘𝑂))) |
18 | 14, 17 | eqtrd 2222 |
. . . . 5
⊢ (𝑅 ∈ 𝑉 → (+g‘𝑅) =
(+g‘(oppr‘𝑂))) |
19 | 18 | oveqdr 5924 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g‘𝑅)𝑦) = (𝑥(+g‘(oppr‘𝑂))𝑦)) |
20 | | vex 2755 |
. . . . . . . 8
⊢ 𝑥 ∈ V |
21 | 20 | a1i 9 |
. . . . . . 7
⊢ (𝑅 ∈ 𝑉 → 𝑥 ∈ V) |
22 | | vex 2755 |
. . . . . . . 8
⊢ 𝑦 ∈ V |
23 | 22 | a1i 9 |
. . . . . . 7
⊢ (𝑅 ∈ 𝑉 → 𝑦 ∈ V) |
24 | | eqid 2189 |
. . . . . . . 8
⊢
(.r‘𝑂) = (.r‘𝑂) |
25 | | eqid 2189 |
. . . . . . . 8
⊢
(.r‘(oppr‘𝑂)) =
(.r‘(oppr‘𝑂)) |
26 | 9, 24, 3, 25 | opprmulg 13421 |
. . . . . . 7
⊢ ((𝑂 ∈ V ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥(.r‘(oppr‘𝑂))𝑦) = (𝑦(.r‘𝑂)𝑥)) |
27 | 8, 21, 23, 26 | syl3anc 1249 |
. . . . . 6
⊢ (𝑅 ∈ 𝑉 → (𝑥(.r‘(oppr‘𝑂))𝑦) = (𝑦(.r‘𝑂)𝑥)) |
28 | 27 | adantr 276 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r‘(oppr‘𝑂))𝑦) = (𝑦(.r‘𝑂)𝑥)) |
29 | | simpl 109 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑅 ∈ 𝑉) |
30 | | simprr 531 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑦 ∈ (Base‘𝑅)) |
31 | | simprl 529 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑥 ∈ (Base‘𝑅)) |
32 | | eqid 2189 |
. . . . . . 7
⊢
(.r‘𝑅) = (.r‘𝑅) |
33 | 5, 32, 1, 24 | opprmulg 13421 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑦(.r‘𝑂)𝑥) = (𝑥(.r‘𝑅)𝑦)) |
34 | 29, 30, 31, 33 | syl3anc 1249 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑦(.r‘𝑂)𝑥) = (𝑥(.r‘𝑅)𝑦)) |
35 | 28, 34 | eqtr2d 2223 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r‘𝑅)𝑦) = (𝑥(.r‘(oppr‘𝑂))𝑦)) |
36 | 6, 12, 19, 35 | rngpropd 13309 |
. . 3
⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rng ↔
(oppr‘𝑂) ∈ Rng)) |
37 | 4, 36 | imbitrrid 156 |
. 2
⊢ (𝑅 ∈ 𝑉 → (𝑂 ∈ Rng → 𝑅 ∈ Rng)) |
38 | 2, 37 | impbid2 143 |
1
⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rng ↔ 𝑂 ∈ Rng)) |