ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprrngbg GIF version

Theorem opprrngbg 13428
Description: A set is a non-unital ring if and only if its opposite is a non-unital ring. Bidirectional form of opprrng 13427. (Contributed by AV, 15-Feb-2025.)
Hypothesis
Ref Expression
opprbas.1 𝑂 = (oppr𝑅)
Assertion
Ref Expression
opprrngbg (𝑅𝑉 → (𝑅 ∈ Rng ↔ 𝑂 ∈ Rng))

Proof of Theorem opprrngbg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprbas.1 . . 3 𝑂 = (oppr𝑅)
21opprrng 13427 . 2 (𝑅 ∈ Rng → 𝑂 ∈ Rng)
3 eqid 2189 . . . 4 (oppr𝑂) = (oppr𝑂)
43opprrng 13427 . . 3 (𝑂 ∈ Rng → (oppr𝑂) ∈ Rng)
5 eqid 2189 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
65a1i 9 . . . 4 (𝑅𝑉 → (Base‘𝑅) = (Base‘𝑅))
71, 5opprbasg 13425 . . . . 5 (𝑅𝑉 → (Base‘𝑅) = (Base‘𝑂))
81opprex 13423 . . . . . 6 (𝑅𝑉𝑂 ∈ V)
9 eqid 2189 . . . . . . 7 (Base‘𝑂) = (Base‘𝑂)
103, 9opprbasg 13425 . . . . . 6 (𝑂 ∈ V → (Base‘𝑂) = (Base‘(oppr𝑂)))
118, 10syl 14 . . . . 5 (𝑅𝑉 → (Base‘𝑂) = (Base‘(oppr𝑂)))
127, 11eqtrd 2222 . . . 4 (𝑅𝑉 → (Base‘𝑅) = (Base‘(oppr𝑂)))
13 eqid 2189 . . . . . . 7 (+g𝑅) = (+g𝑅)
141, 13oppraddg 13426 . . . . . 6 (𝑅𝑉 → (+g𝑅) = (+g𝑂))
15 eqid 2189 . . . . . . . 8 (+g𝑂) = (+g𝑂)
163, 15oppraddg 13426 . . . . . . 7 (𝑂 ∈ V → (+g𝑂) = (+g‘(oppr𝑂)))
178, 16syl 14 . . . . . 6 (𝑅𝑉 → (+g𝑂) = (+g‘(oppr𝑂)))
1814, 17eqtrd 2222 . . . . 5 (𝑅𝑉 → (+g𝑅) = (+g‘(oppr𝑂)))
1918oveqdr 5924 . . . 4 ((𝑅𝑉 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g𝑅)𝑦) = (𝑥(+g‘(oppr𝑂))𝑦))
20 vex 2755 . . . . . . . 8 𝑥 ∈ V
2120a1i 9 . . . . . . 7 (𝑅𝑉𝑥 ∈ V)
22 vex 2755 . . . . . . . 8 𝑦 ∈ V
2322a1i 9 . . . . . . 7 (𝑅𝑉𝑦 ∈ V)
24 eqid 2189 . . . . . . . 8 (.r𝑂) = (.r𝑂)
25 eqid 2189 . . . . . . . 8 (.r‘(oppr𝑂)) = (.r‘(oppr𝑂))
269, 24, 3, 25opprmulg 13421 . . . . . . 7 ((𝑂 ∈ V ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥(.r‘(oppr𝑂))𝑦) = (𝑦(.r𝑂)𝑥))
278, 21, 23, 26syl3anc 1249 . . . . . 6 (𝑅𝑉 → (𝑥(.r‘(oppr𝑂))𝑦) = (𝑦(.r𝑂)𝑥))
2827adantr 276 . . . . 5 ((𝑅𝑉 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r‘(oppr𝑂))𝑦) = (𝑦(.r𝑂)𝑥))
29 simpl 109 . . . . . 6 ((𝑅𝑉 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑅𝑉)
30 simprr 531 . . . . . 6 ((𝑅𝑉 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑦 ∈ (Base‘𝑅))
31 simprl 529 . . . . . 6 ((𝑅𝑉 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑥 ∈ (Base‘𝑅))
32 eqid 2189 . . . . . . 7 (.r𝑅) = (.r𝑅)
335, 32, 1, 24opprmulg 13421 . . . . . 6 ((𝑅𝑉𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑦(.r𝑂)𝑥) = (𝑥(.r𝑅)𝑦))
3429, 30, 31, 33syl3anc 1249 . . . . 5 ((𝑅𝑉 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑦(.r𝑂)𝑥) = (𝑥(.r𝑅)𝑦))
3528, 34eqtr2d 2223 . . . 4 ((𝑅𝑉 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r𝑅)𝑦) = (𝑥(.r‘(oppr𝑂))𝑦))
366, 12, 19, 35rngpropd 13309 . . 3 (𝑅𝑉 → (𝑅 ∈ Rng ↔ (oppr𝑂) ∈ Rng))
374, 36imbitrrid 156 . 2 (𝑅𝑉 → (𝑂 ∈ Rng → 𝑅 ∈ Rng))
382, 37impbid2 143 1 (𝑅𝑉 → (𝑅 ∈ Rng ↔ 𝑂 ∈ Rng))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2160  Vcvv 2752  cfv 5235  (class class class)co 5896  Basecbs 12512  +gcplusg 12589  .rcmulr 12590  Rngcrng 13286  opprcoppr 13417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-addcom 7941  ax-addass 7943  ax-i2m1 7946  ax-0lt1 7947  ax-0id 7949  ax-rnegex 7950  ax-pre-ltirr 7953  ax-pre-lttrn 7955  ax-pre-ltadd 7957
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-fv 5243  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-tpos 6270  df-pnf 8024  df-mnf 8025  df-ltxr 8027  df-inn 8950  df-2 9008  df-3 9009  df-ndx 12515  df-slot 12516  df-base 12518  df-sets 12519  df-plusg 12602  df-mulr 12603  df-0g 12763  df-mgm 12832  df-sgrp 12865  df-mnd 12878  df-grp 12948  df-cmn 13225  df-abl 13226  df-mgp 13275  df-rng 13287  df-oppr 13418
This theorem is referenced by:  opprsubrngg  13558
  Copyright terms: Public domain W3C validator