ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opprrngbg GIF version

Theorem opprrngbg 13634
Description: A set is a non-unital ring if and only if its opposite is a non-unital ring. Bidirectional form of opprrng 13633. (Contributed by AV, 15-Feb-2025.)
Hypothesis
Ref Expression
opprbas.1 𝑂 = (oppr𝑅)
Assertion
Ref Expression
opprrngbg (𝑅𝑉 → (𝑅 ∈ Rng ↔ 𝑂 ∈ Rng))

Proof of Theorem opprrngbg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprbas.1 . . 3 𝑂 = (oppr𝑅)
21opprrng 13633 . 2 (𝑅 ∈ Rng → 𝑂 ∈ Rng)
3 eqid 2196 . . . 4 (oppr𝑂) = (oppr𝑂)
43opprrng 13633 . . 3 (𝑂 ∈ Rng → (oppr𝑂) ∈ Rng)
5 eqid 2196 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
65a1i 9 . . . 4 (𝑅𝑉 → (Base‘𝑅) = (Base‘𝑅))
71, 5opprbasg 13631 . . . . 5 (𝑅𝑉 → (Base‘𝑅) = (Base‘𝑂))
81opprex 13629 . . . . . 6 (𝑅𝑉𝑂 ∈ V)
9 eqid 2196 . . . . . . 7 (Base‘𝑂) = (Base‘𝑂)
103, 9opprbasg 13631 . . . . . 6 (𝑂 ∈ V → (Base‘𝑂) = (Base‘(oppr𝑂)))
118, 10syl 14 . . . . 5 (𝑅𝑉 → (Base‘𝑂) = (Base‘(oppr𝑂)))
127, 11eqtrd 2229 . . . 4 (𝑅𝑉 → (Base‘𝑅) = (Base‘(oppr𝑂)))
13 eqid 2196 . . . . . . 7 (+g𝑅) = (+g𝑅)
141, 13oppraddg 13632 . . . . . 6 (𝑅𝑉 → (+g𝑅) = (+g𝑂))
15 eqid 2196 . . . . . . . 8 (+g𝑂) = (+g𝑂)
163, 15oppraddg 13632 . . . . . . 7 (𝑂 ∈ V → (+g𝑂) = (+g‘(oppr𝑂)))
178, 16syl 14 . . . . . 6 (𝑅𝑉 → (+g𝑂) = (+g‘(oppr𝑂)))
1814, 17eqtrd 2229 . . . . 5 (𝑅𝑉 → (+g𝑅) = (+g‘(oppr𝑂)))
1918oveqdr 5950 . . . 4 ((𝑅𝑉 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g𝑅)𝑦) = (𝑥(+g‘(oppr𝑂))𝑦))
20 vex 2766 . . . . . . . 8 𝑥 ∈ V
2120a1i 9 . . . . . . 7 (𝑅𝑉𝑥 ∈ V)
22 vex 2766 . . . . . . . 8 𝑦 ∈ V
2322a1i 9 . . . . . . 7 (𝑅𝑉𝑦 ∈ V)
24 eqid 2196 . . . . . . . 8 (.r𝑂) = (.r𝑂)
25 eqid 2196 . . . . . . . 8 (.r‘(oppr𝑂)) = (.r‘(oppr𝑂))
269, 24, 3, 25opprmulg 13627 . . . . . . 7 ((𝑂 ∈ V ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥(.r‘(oppr𝑂))𝑦) = (𝑦(.r𝑂)𝑥))
278, 21, 23, 26syl3anc 1249 . . . . . 6 (𝑅𝑉 → (𝑥(.r‘(oppr𝑂))𝑦) = (𝑦(.r𝑂)𝑥))
2827adantr 276 . . . . 5 ((𝑅𝑉 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r‘(oppr𝑂))𝑦) = (𝑦(.r𝑂)𝑥))
29 simpl 109 . . . . . 6 ((𝑅𝑉 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑅𝑉)
30 simprr 531 . . . . . 6 ((𝑅𝑉 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑦 ∈ (Base‘𝑅))
31 simprl 529 . . . . . 6 ((𝑅𝑉 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → 𝑥 ∈ (Base‘𝑅))
32 eqid 2196 . . . . . . 7 (.r𝑅) = (.r𝑅)
335, 32, 1, 24opprmulg 13627 . . . . . 6 ((𝑅𝑉𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑦(.r𝑂)𝑥) = (𝑥(.r𝑅)𝑦))
3429, 30, 31, 33syl3anc 1249 . . . . 5 ((𝑅𝑉 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑦(.r𝑂)𝑥) = (𝑥(.r𝑅)𝑦))
3528, 34eqtr2d 2230 . . . 4 ((𝑅𝑉 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r𝑅)𝑦) = (𝑥(.r‘(oppr𝑂))𝑦))
366, 12, 19, 35rngpropd 13511 . . 3 (𝑅𝑉 → (𝑅 ∈ Rng ↔ (oppr𝑂) ∈ Rng))
374, 36imbitrrid 156 . 2 (𝑅𝑉 → (𝑂 ∈ Rng → 𝑅 ∈ Rng))
382, 37impbid2 143 1 (𝑅𝑉 → (𝑅 ∈ Rng ↔ 𝑂 ∈ Rng))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  Vcvv 2763  cfv 5258  (class class class)co 5922  Basecbs 12678  +gcplusg 12755  .rcmulr 12756  Rngcrng 13488  opprcoppr 13623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-tpos 6303  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-plusg 12768  df-mulr 12769  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-cmn 13416  df-abl 13417  df-mgp 13477  df-rng 13489  df-oppr 13624
This theorem is referenced by:  opprsubrngg  13767
  Copyright terms: Public domain W3C validator