ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2fzr GIF version

Theorem peano2fzr 9962
Description: A Peano-postulate-like theorem for downward closure of a finite set of sequential integers. (Contributed by Mario Carneiro, 27-May-2014.)
Assertion
Ref Expression
peano2fzr ((𝐾 ∈ (ℤ𝑀) ∧ (𝐾 + 1) ∈ (𝑀...𝑁)) → 𝐾 ∈ (𝑀...𝑁))

Proof of Theorem peano2fzr
StepHypRef Expression
1 simpl 108 . 2 ((𝐾 ∈ (ℤ𝑀) ∧ (𝐾 + 1) ∈ (𝑀...𝑁)) → 𝐾 ∈ (ℤ𝑀))
2 eluzelz 9466 . . 3 (𝐾 ∈ (ℤ𝑀) → 𝐾 ∈ ℤ)
3 elfzuz3 9948 . . 3 ((𝐾 + 1) ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ‘(𝐾 + 1)))
4 peano2uzr 9514 . . 3 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ (ℤ‘(𝐾 + 1))) → 𝑁 ∈ (ℤ𝐾))
52, 3, 4syl2an 287 . 2 ((𝐾 ∈ (ℤ𝑀) ∧ (𝐾 + 1) ∈ (𝑀...𝑁)) → 𝑁 ∈ (ℤ𝐾))
6 elfzuzb 9945 . 2 (𝐾 ∈ (𝑀...𝑁) ↔ (𝐾 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)))
71, 5, 6sylanbrc 414 1 ((𝐾 ∈ (ℤ𝑀) ∧ (𝐾 + 1) ∈ (𝑀...𝑁)) → 𝐾 ∈ (𝑀...𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wcel 2135  cfv 5182  (class class class)co 5836  1c1 7745   + caddc 7747  cz 9182  cuz 9457  ...cfz 9935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-addcom 7844  ax-addass 7846  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-0id 7852  ax-rnegex 7853  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-ltadd 7860
This theorem depends on definitions:  df-bi 116  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-br 3977  df-opab 4038  df-mpt 4039  df-id 4265  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-inn 8849  df-n0 9106  df-z 9183  df-uz 9458  df-fz 9936
This theorem is referenced by:  fzsuc  9994  peano2fzor  10157  seq3fveq2  10394  seq3shft2  10398  monoord  10401  seq3split  10404  seq3id2  10434
  Copyright terms: Public domain W3C validator