| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seqfveq2g | Unicode version | ||
| Description: Equality of sequences. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 27-May-2014.) |
| Ref | Expression |
|---|---|
| seqfveq2.1 |
|
| seqfveq2.2 |
|
| seqfveq2g.p |
|
| seqfveq2g.f |
|
| seqfveq2g.g |
|
| seqfveq2.3 |
|
| seqfveq2.4 |
|
| Ref | Expression |
|---|---|
| seqfveq2g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqfveq2.3 |
. . 3
| |
| 2 | eluzfz2 10224 |
. . 3
| |
| 3 | 1, 2 | syl 14 |
. 2
|
| 4 | eleq1 2292 |
. . . . . 6
| |
| 5 | fveq2 5626 |
. . . . . . 7
| |
| 6 | fveq2 5626 |
. . . . . . 7
| |
| 7 | 5, 6 | eqeq12d 2244 |
. . . . . 6
|
| 8 | 4, 7 | imbi12d 234 |
. . . . 5
|
| 9 | 8 | imbi2d 230 |
. . . 4
|
| 10 | eleq1 2292 |
. . . . . 6
| |
| 11 | fveq2 5626 |
. . . . . . 7
| |
| 12 | fveq2 5626 |
. . . . . . 7
| |
| 13 | 11, 12 | eqeq12d 2244 |
. . . . . 6
|
| 14 | 10, 13 | imbi12d 234 |
. . . . 5
|
| 15 | 14 | imbi2d 230 |
. . . 4
|
| 16 | eleq1 2292 |
. . . . . 6
| |
| 17 | fveq2 5626 |
. . . . . . 7
| |
| 18 | fveq2 5626 |
. . . . . . 7
| |
| 19 | 17, 18 | eqeq12d 2244 |
. . . . . 6
|
| 20 | 16, 19 | imbi12d 234 |
. . . . 5
|
| 21 | 20 | imbi2d 230 |
. . . 4
|
| 22 | eleq1 2292 |
. . . . . 6
| |
| 23 | fveq2 5626 |
. . . . . . 7
| |
| 24 | fveq2 5626 |
. . . . . . 7
| |
| 25 | 23, 24 | eqeq12d 2244 |
. . . . . 6
|
| 26 | 22, 25 | imbi12d 234 |
. . . . 5
|
| 27 | 26 | imbi2d 230 |
. . . 4
|
| 28 | seqfveq2.2 |
. . . . . 6
| |
| 29 | seqfveq2.1 |
. . . . . . . 8
| |
| 30 | eluzelz 9727 |
. . . . . . . 8
| |
| 31 | 29, 30 | syl 14 |
. . . . . . 7
|
| 32 | seqfveq2g.g |
. . . . . . 7
| |
| 33 | seqfveq2g.p |
. . . . . . 7
| |
| 34 | seq1g 10680 |
. . . . . . 7
| |
| 35 | 31, 32, 33, 34 | syl3anc 1271 |
. . . . . 6
|
| 36 | 28, 35 | eqtr4d 2265 |
. . . . 5
|
| 37 | 36 | a1d 22 |
. . . 4
|
| 38 | peano2fzr 10229 |
. . . . . . . 8
| |
| 39 | 38 | adantl 277 |
. . . . . . 7
|
| 40 | 39 | expr 375 |
. . . . . 6
|
| 41 | 40 | imim1d 75 |
. . . . 5
|
| 42 | oveq1 6007 |
. . . . . 6
| |
| 43 | simpl 109 |
. . . . . . . . 9
| |
| 44 | uztrn 9735 |
. . . . . . . . 9
| |
| 45 | 43, 29, 44 | syl2anr 290 |
. . . . . . . 8
|
| 46 | seqfveq2g.f |
. . . . . . . . 9
| |
| 47 | 46 | adantr 276 |
. . . . . . . 8
|
| 48 | 33 | adantr 276 |
. . . . . . . 8
|
| 49 | seqp1g 10683 |
. . . . . . . 8
| |
| 50 | 45, 47, 48, 49 | syl3anc 1271 |
. . . . . . 7
|
| 51 | 43 | adantl 277 |
. . . . . . . . 9
|
| 52 | 32 | adantr 276 |
. . . . . . . . 9
|
| 53 | seqp1g 10683 |
. . . . . . . . 9
| |
| 54 | 51, 52, 48, 53 | syl3anc 1271 |
. . . . . . . 8
|
| 55 | fveq2 5626 |
. . . . . . . . . . 11
| |
| 56 | fveq2 5626 |
. . . . . . . . . . 11
| |
| 57 | 55, 56 | eqeq12d 2244 |
. . . . . . . . . 10
|
| 58 | seqfveq2.4 |
. . . . . . . . . . . 12
| |
| 59 | 58 | ralrimiva 2603 |
. . . . . . . . . . 11
|
| 60 | 59 | adantr 276 |
. . . . . . . . . 10
|
| 61 | eluzp1p1 9744 |
. . . . . . . . . . . 12
| |
| 62 | 61 | ad2antrl 490 |
. . . . . . . . . . 11
|
| 63 | elfzuz3 10214 |
. . . . . . . . . . . 12
| |
| 64 | 63 | ad2antll 491 |
. . . . . . . . . . 11
|
| 65 | elfzuzb 10211 |
. . . . . . . . . . 11
| |
| 66 | 62, 64, 65 | sylanbrc 417 |
. . . . . . . . . 10
|
| 67 | 57, 60, 66 | rspcdva 2912 |
. . . . . . . . 9
|
| 68 | 67 | oveq2d 6016 |
. . . . . . . 8
|
| 69 | 54, 68 | eqtr4d 2265 |
. . . . . . 7
|
| 70 | 50, 69 | eqeq12d 2244 |
. . . . . 6
|
| 71 | 42, 70 | imbitrrid 156 |
. . . . 5
|
| 72 | 41, 71 | animpimp2impd 559 |
. . . 4
|
| 73 | 9, 15, 21, 27, 37, 72 | uzind4i 9783 |
. . 3
|
| 74 | 1, 73 | mpcom 36 |
. 2
|
| 75 | 3, 74 | mpd 13 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-frec 6535 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-n0 9366 df-z 9443 df-uz 9719 df-fz 10201 df-seqfrec 10665 |
| This theorem is referenced by: seqfveqg 10695 |
| Copyright terms: Public domain | W3C validator |