| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > divcanap1d | Unicode version | ||
| Description: A cancellation law for division. (Contributed by Jim Kingdon, 29-Feb-2020.) |
| Ref | Expression |
|---|---|
| divcld.1 |
|
| divcld.2 |
|
| divclapd.3 |
|
| Ref | Expression |
|---|---|
| divcanap1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divcld.1 |
. 2
| |
| 2 | divcld.2 |
. 2
| |
| 3 | divclapd.3 |
. 2
| |
| 4 | divcanap1 8736 |
. 2
| |
| 5 | 1, 2, 3, 4 | syl3anc 1249 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-mulrcl 8006 ax-addcom 8007 ax-mulcom 8008 ax-addass 8009 ax-mulass 8010 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-1rid 8014 ax-0id 8015 ax-rnegex 8016 ax-precex 8017 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-apti 8022 ax-pre-ltadd 8023 ax-pre-mulgt0 8024 ax-pre-mulext 8025 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4338 df-po 4341 df-iso 4342 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-iota 5229 df-fun 5270 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-reap 8630 df-ap 8637 df-div 8728 |
| This theorem is referenced by: apdivmuld 8868 ltdiv23 8947 lediv23 8948 recp1lt1 8954 ledivp1 8958 subhalfhalf 9254 xp1d2m1eqxm1d2 9272 div4p1lem1div2 9273 qmulz 9726 iccf1o 10108 bcpasc 10892 resqrexlemcalc1 11244 sqrtdiv 11272 geo2sum 11744 dvdsval2 12020 flodddiv4t2lthalf 12169 dvdsgcdidd 12234 mulgcddvds 12335 qredeq 12337 isprm6 12388 sqrt2irrlem 12402 qmuldeneqnum 12436 hashgcdlem 12479 pcqdiv 12549 pockthlem 12598 4sqlem5 12624 4sqlem12 12644 4sqlem15 12647 znidomb 14338 znrrg 14340 dvcnp2cntop 15089 rpcxplogb 15354 logbgcd1irr 15357 logbgcd1irraplemap 15359 lgslem1 15395 gausslemma2dlem1a 15453 lgsquadlem1 15472 2lgslem1a1 15481 |
| Copyright terms: Public domain | W3C validator |