ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divcanap1d Unicode version

Theorem divcanap1d 8762
Description: A cancellation law for division. (Contributed by Jim Kingdon, 29-Feb-2020.)
Hypotheses
Ref Expression
divcld.1  |-  ( ph  ->  A  e.  CC )
divcld.2  |-  ( ph  ->  B  e.  CC )
divclapd.3  |-  ( ph  ->  B #  0 )
Assertion
Ref Expression
divcanap1d  |-  ( ph  ->  ( ( A  /  B )  x.  B
)  =  A )

Proof of Theorem divcanap1d
StepHypRef Expression
1 divcld.1 . 2  |-  ( ph  ->  A  e.  CC )
2 divcld.2 . 2  |-  ( ph  ->  B  e.  CC )
3 divclapd.3 . 2  |-  ( ph  ->  B #  0 )
4 divcanap1 8652 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  (
( A  /  B
)  x.  B )  =  A )
51, 2, 3, 4syl3anc 1248 1  |-  ( ph  ->  ( ( A  /  B )  x.  B
)  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1363    e. wcel 2158   class class class wbr 4015  (class class class)co 5888   CCcc 7823   0cc0 7825    x. cmul 7830   # cap 8552    / cdiv 8643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-mulrcl 7924  ax-addcom 7925  ax-mulcom 7926  ax-addass 7927  ax-mulass 7928  ax-distr 7929  ax-i2m1 7930  ax-0lt1 7931  ax-1rid 7932  ax-0id 7933  ax-rnegex 7934  ax-precex 7935  ax-cnre 7936  ax-pre-ltirr 7937  ax-pre-ltwlin 7938  ax-pre-lttrn 7939  ax-pre-apti 7940  ax-pre-ltadd 7941  ax-pre-mulgt0 7942  ax-pre-mulext 7943
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-br 4016  df-opab 4077  df-id 4305  df-po 4308  df-iso 4309  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-iota 5190  df-fun 5230  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-sub 8144  df-neg 8145  df-reap 8546  df-ap 8553  df-div 8644
This theorem is referenced by:  apdivmuld  8784  ltdiv23  8863  lediv23  8864  recp1lt1  8870  ledivp1  8874  xp1d2m1eqxm1d2  9185  div4p1lem1div2  9186  qmulz  9637  iccf1o  10018  bcpasc  10760  resqrexlemcalc1  11037  sqrtdiv  11065  geo2sum  11536  dvdsval2  11811  flodddiv4t2lthalf  11956  dvdsgcdidd  12009  mulgcddvds  12108  qredeq  12110  isprm6  12161  sqrt2irrlem  12175  qmuldeneqnum  12209  hashgcdlem  12252  pcqdiv  12321  pockthlem  12368  4sqlem5  12394  dvcnp2cntop  14459  rpcxplogb  14678  logbgcd1irr  14681  logbgcd1irraplemap  14683  lgslem1  14697
  Copyright terms: Public domain W3C validator