ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ress0g GIF version

Theorem ress0g 12865
Description: 0g is unaffected by restriction. This is a bit more generic than submnd0 12866. (Contributed by Thierry Arnoux, 23-Oct-2017.)
Hypotheses
Ref Expression
ress0g.s 𝑆 = (𝑅s 𝐴)
ress0g.b 𝐵 = (Base‘𝑅)
ress0g.0 0 = (0g𝑅)
Assertion
Ref Expression
ress0g ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 0 = (0g𝑆))

Proof of Theorem ress0g
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ress0g.s . . . 4 𝑆 = (𝑅s 𝐴)
21a1i 9 . . 3 ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 𝑆 = (𝑅s 𝐴))
3 ress0g.b . . . 4 𝐵 = (Base‘𝑅)
43a1i 9 . . 3 ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 𝐵 = (Base‘𝑅))
5 simp1 998 . . 3 ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 𝑅 ∈ Mnd)
6 simp3 1000 . . 3 ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 𝐴𝐵)
72, 4, 5, 6ressbas2d 12541 . 2 ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 𝐴 = (Base‘𝑆))
8 eqidd 2188 . . 3 ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → (+g𝑅) = (+g𝑅))
9 basfn 12533 . . . . . 6 Base Fn V
105elexd 2762 . . . . . 6 ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 𝑅 ∈ V)
11 funfvex 5544 . . . . . . 7 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
1211funfni 5328 . . . . . 6 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
139, 10, 12sylancr 414 . . . . 5 ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → (Base‘𝑅) ∈ V)
143, 13eqeltrid 2274 . . . 4 ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 𝐵 ∈ V)
1514, 6ssexd 4155 . . 3 ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 𝐴 ∈ V)
162, 8, 15, 5ressplusgd 12601 . 2 ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → (+g𝑅) = (+g𝑆))
17 simp2 999 . 2 ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 0𝐴)
18 simpl1 1001 . . 3 (((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) ∧ 𝑥𝐴) → 𝑅 ∈ Mnd)
196sselda 3167 . . 3 (((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) ∧ 𝑥𝐴) → 𝑥𝐵)
20 eqid 2187 . . . 4 (+g𝑅) = (+g𝑅)
21 ress0g.0 . . . 4 0 = (0g𝑅)
223, 20, 21mndlid 12857 . . 3 ((𝑅 ∈ Mnd ∧ 𝑥𝐵) → ( 0 (+g𝑅)𝑥) = 𝑥)
2318, 19, 22syl2anc 411 . 2 (((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) ∧ 𝑥𝐴) → ( 0 (+g𝑅)𝑥) = 𝑥)
243, 20, 21mndrid 12858 . . 3 ((𝑅 ∈ Mnd ∧ 𝑥𝐵) → (𝑥(+g𝑅) 0 ) = 𝑥)
2518, 19, 24syl2anc 411 . 2 (((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) ∧ 𝑥𝐴) → (𝑥(+g𝑅) 0 ) = 𝑥)
267, 16, 17, 23, 25grpidd 12820 1 ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 0 = (0g𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 979   = wceq 1363  wcel 2158  Vcvv 2749  wss 3141   Fn wfn 5223  cfv 5228  (class class class)co 5888  Basecbs 12475  s cress 12476  +gcplusg 12550  0gc0g 12722  Mndcmnd 12838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-addcom 7924  ax-addass 7926  ax-i2m1 7929  ax-0lt1 7930  ax-0id 7932  ax-rnegex 7933  ax-pre-ltirr 7936  ax-pre-ltadd 7940
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-br 4016  df-opab 4077  df-mpt 4078  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-iota 5190  df-fun 5230  df-fn 5231  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-pnf 8007  df-mnf 8008  df-ltxr 8010  df-inn 8933  df-2 8991  df-ndx 12478  df-slot 12479  df-base 12481  df-sets 12482  df-iress 12483  df-plusg 12563  df-0g 12724  df-mgm 12793  df-sgrp 12826  df-mnd 12839
This theorem is referenced by:  submnd0  12866  zring0  13747
  Copyright terms: Public domain W3C validator