ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ress0g GIF version

Theorem ress0g 12849
Description: 0g is unaffected by restriction. This is a bit more generic than submnd0 12850. (Contributed by Thierry Arnoux, 23-Oct-2017.)
Hypotheses
Ref Expression
ress0g.s 𝑆 = (𝑅s 𝐴)
ress0g.b 𝐵 = (Base‘𝑅)
ress0g.0 0 = (0g𝑅)
Assertion
Ref Expression
ress0g ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 0 = (0g𝑆))

Proof of Theorem ress0g
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ress0g.s . . . 4 𝑆 = (𝑅s 𝐴)
21a1i 9 . . 3 ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 𝑆 = (𝑅s 𝐴))
3 ress0g.b . . . 4 𝐵 = (Base‘𝑅)
43a1i 9 . . 3 ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 𝐵 = (Base‘𝑅))
5 simp1 997 . . 3 ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 𝑅 ∈ Mnd)
6 simp3 999 . . 3 ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 𝐴𝐵)
72, 4, 5, 6ressbas2d 12530 . 2 ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 𝐴 = (Base‘𝑆))
8 eqidd 2178 . . 3 ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → (+g𝑅) = (+g𝑅))
9 basfn 12522 . . . . . 6 Base Fn V
105elexd 2752 . . . . . 6 ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 𝑅 ∈ V)
11 funfvex 5534 . . . . . . 7 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
1211funfni 5318 . . . . . 6 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
139, 10, 12sylancr 414 . . . . 5 ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → (Base‘𝑅) ∈ V)
143, 13eqeltrid 2264 . . . 4 ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 𝐵 ∈ V)
1514, 6ssexd 4145 . . 3 ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 𝐴 ∈ V)
162, 8, 15, 5ressplusgd 12589 . 2 ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → (+g𝑅) = (+g𝑆))
17 simp2 998 . 2 ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 0𝐴)
18 simpl1 1000 . . 3 (((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) ∧ 𝑥𝐴) → 𝑅 ∈ Mnd)
196sselda 3157 . . 3 (((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) ∧ 𝑥𝐴) → 𝑥𝐵)
20 eqid 2177 . . . 4 (+g𝑅) = (+g𝑅)
21 ress0g.0 . . . 4 0 = (0g𝑅)
223, 20, 21mndlid 12841 . . 3 ((𝑅 ∈ Mnd ∧ 𝑥𝐵) → ( 0 (+g𝑅)𝑥) = 𝑥)
2318, 19, 22syl2anc 411 . 2 (((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) ∧ 𝑥𝐴) → ( 0 (+g𝑅)𝑥) = 𝑥)
243, 20, 21mndrid 12842 . . 3 ((𝑅 ∈ Mnd ∧ 𝑥𝐵) → (𝑥(+g𝑅) 0 ) = 𝑥)
2518, 19, 24syl2anc 411 . 2 (((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) ∧ 𝑥𝐴) → (𝑥(+g𝑅) 0 ) = 𝑥)
267, 16, 17, 23, 25grpidd 12807 1 ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 0 = (0g𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978   = wceq 1353  wcel 2148  Vcvv 2739  wss 3131   Fn wfn 5213  cfv 5218  (class class class)co 5877  Basecbs 12464  s cress 12465  +gcplusg 12538  0gc0g 12710  Mndcmnd 12822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-pre-ltirr 7925  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-ltxr 7999  df-inn 8922  df-2 8980  df-ndx 12467  df-slot 12468  df-base 12470  df-sets 12471  df-iress 12472  df-plusg 12551  df-0g 12712  df-mgm 12780  df-sgrp 12813  df-mnd 12823
This theorem is referenced by:  submnd0  12850  zring0  13575
  Copyright terms: Public domain W3C validator