ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ress0g GIF version

Theorem ress0g 13024
Description: 0g is unaffected by restriction. This is a bit more generic than submnd0 13025. (Contributed by Thierry Arnoux, 23-Oct-2017.)
Hypotheses
Ref Expression
ress0g.s 𝑆 = (𝑅s 𝐴)
ress0g.b 𝐵 = (Base‘𝑅)
ress0g.0 0 = (0g𝑅)
Assertion
Ref Expression
ress0g ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 0 = (0g𝑆))

Proof of Theorem ress0g
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ress0g.s . . . 4 𝑆 = (𝑅s 𝐴)
21a1i 9 . . 3 ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 𝑆 = (𝑅s 𝐴))
3 ress0g.b . . . 4 𝐵 = (Base‘𝑅)
43a1i 9 . . 3 ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 𝐵 = (Base‘𝑅))
5 simp1 999 . . 3 ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 𝑅 ∈ Mnd)
6 simp3 1001 . . 3 ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 𝐴𝐵)
72, 4, 5, 6ressbas2d 12686 . 2 ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 𝐴 = (Base‘𝑆))
8 eqidd 2194 . . 3 ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → (+g𝑅) = (+g𝑅))
9 basfn 12676 . . . . . 6 Base Fn V
105elexd 2773 . . . . . 6 ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 𝑅 ∈ V)
11 funfvex 5571 . . . . . . 7 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
1211funfni 5354 . . . . . 6 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
139, 10, 12sylancr 414 . . . . 5 ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → (Base‘𝑅) ∈ V)
143, 13eqeltrid 2280 . . . 4 ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 𝐵 ∈ V)
1514, 6ssexd 4169 . . 3 ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 𝐴 ∈ V)
162, 8, 15, 5ressplusgd 12746 . 2 ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → (+g𝑅) = (+g𝑆))
17 simp2 1000 . 2 ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 0𝐴)
18 simpl1 1002 . . 3 (((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) ∧ 𝑥𝐴) → 𝑅 ∈ Mnd)
196sselda 3179 . . 3 (((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) ∧ 𝑥𝐴) → 𝑥𝐵)
20 eqid 2193 . . . 4 (+g𝑅) = (+g𝑅)
21 ress0g.0 . . . 4 0 = (0g𝑅)
223, 20, 21mndlid 13016 . . 3 ((𝑅 ∈ Mnd ∧ 𝑥𝐵) → ( 0 (+g𝑅)𝑥) = 𝑥)
2318, 19, 22syl2anc 411 . 2 (((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) ∧ 𝑥𝐴) → ( 0 (+g𝑅)𝑥) = 𝑥)
243, 20, 21mndrid 13017 . . 3 ((𝑅 ∈ Mnd ∧ 𝑥𝐵) → (𝑥(+g𝑅) 0 ) = 𝑥)
2518, 19, 24syl2anc 411 . 2 (((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) ∧ 𝑥𝐴) → (𝑥(+g𝑅) 0 ) = 𝑥)
267, 16, 17, 23, 25grpidd 12966 1 ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 0 = (0g𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2164  Vcvv 2760  wss 3153   Fn wfn 5249  cfv 5254  (class class class)co 5918  Basecbs 12618  s cress 12619  +gcplusg 12695  0gc0g 12867  Mndcmnd 12997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998
This theorem is referenced by:  submnd0  13025  zring0  14088
  Copyright terms: Public domain W3C validator