| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ress0g | GIF version | ||
| Description: 0g is unaffected by restriction. This is a bit more generic than submnd0 13391. (Contributed by Thierry Arnoux, 23-Oct-2017.) |
| Ref | Expression |
|---|---|
| ress0g.s | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
| ress0g.b | ⊢ 𝐵 = (Base‘𝑅) |
| ress0g.0 | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| ress0g | ⊢ ((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 0 = (0g‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ress0g.s | . . . 4 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
| 2 | 1 | a1i 9 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 𝑆 = (𝑅 ↾s 𝐴)) |
| 3 | ress0g.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 4 | 3 | a1i 9 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 𝐵 = (Base‘𝑅)) |
| 5 | simp1 1000 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 𝑅 ∈ Mnd) | |
| 6 | simp3 1002 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 𝐴 ⊆ 𝐵) | |
| 7 | 2, 4, 5, 6 | ressbas2d 13015 | . 2 ⊢ ((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 𝐴 = (Base‘𝑆)) |
| 8 | eqidd 2208 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → (+g‘𝑅) = (+g‘𝑅)) | |
| 9 | basfn 13005 | . . . . . 6 ⊢ Base Fn V | |
| 10 | 5 | elexd 2790 | . . . . . 6 ⊢ ((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 𝑅 ∈ V) |
| 11 | funfvex 5616 | . . . . . . 7 ⊢ ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V) | |
| 12 | 11 | funfni 5395 | . . . . . 6 ⊢ ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V) |
| 13 | 9, 10, 12 | sylancr 414 | . . . . 5 ⊢ ((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → (Base‘𝑅) ∈ V) |
| 14 | 3, 13 | eqeltrid 2294 | . . . 4 ⊢ ((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 𝐵 ∈ V) |
| 15 | 14, 6 | ssexd 4200 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 𝐴 ∈ V) |
| 16 | 2, 8, 15, 5 | ressplusgd 13076 | . 2 ⊢ ((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → (+g‘𝑅) = (+g‘𝑆)) |
| 17 | simp2 1001 | . 2 ⊢ ((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 0 ∈ 𝐴) | |
| 18 | simpl1 1003 | . . 3 ⊢ (((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑅 ∈ Mnd) | |
| 19 | 6 | sselda 3201 | . . 3 ⊢ (((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) |
| 20 | eqid 2207 | . . . 4 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 21 | ress0g.0 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 22 | 3, 20, 21 | mndlid 13382 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → ( 0 (+g‘𝑅)𝑥) = 𝑥) |
| 23 | 18, 19, 22 | syl2anc 411 | . 2 ⊢ (((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ 𝐴) → ( 0 (+g‘𝑅)𝑥) = 𝑥) |
| 24 | 3, 20, 21 | mndrid 13383 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → (𝑥(+g‘𝑅) 0 ) = 𝑥) |
| 25 | 18, 19, 24 | syl2anc 411 | . 2 ⊢ (((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝑥(+g‘𝑅) 0 ) = 𝑥) |
| 26 | 7, 16, 17, 23, 25 | grpidd 13330 | 1 ⊢ ((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 0 = (0g‘𝑆)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 = wceq 1373 ∈ wcel 2178 Vcvv 2776 ⊆ wss 3174 Fn wfn 5285 ‘cfv 5290 (class class class)co 5967 Basecbs 12947 ↾s cress 12948 +gcplusg 13024 0gc0g 13203 Mndcmnd 13363 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-pre-ltirr 8072 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-ltxr 8147 df-inn 9072 df-2 9130 df-ndx 12950 df-slot 12951 df-base 12953 df-sets 12954 df-iress 12955 df-plusg 13037 df-0g 13205 df-mgm 13303 df-sgrp 13349 df-mnd 13364 |
| This theorem is referenced by: submnd0 13391 zring0 14477 |
| Copyright terms: Public domain | W3C validator |