| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ringidvalg | GIF version | ||
| Description: The value of the unity element of a ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| ringidval.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
| ringidval.u | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| ringidvalg | ⊢ (𝑅 ∈ 𝑉 → 1 = (0g‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2782 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
| 2 | df-ur 13664 | . . . . 5 ⊢ 1r = (0g ∘ mulGrp) | |
| 3 | 2 | fveq1i 5576 | . . . 4 ⊢ (1r‘𝑅) = ((0g ∘ mulGrp)‘𝑅) |
| 4 | fnmgp 13626 | . . . . 5 ⊢ mulGrp Fn V | |
| 5 | fvco2 5647 | . . . . 5 ⊢ ((mulGrp Fn V ∧ 𝑅 ∈ V) → ((0g ∘ mulGrp)‘𝑅) = (0g‘(mulGrp‘𝑅))) | |
| 6 | 4, 5 | mpan 424 | . . . 4 ⊢ (𝑅 ∈ V → ((0g ∘ mulGrp)‘𝑅) = (0g‘(mulGrp‘𝑅))) |
| 7 | 3, 6 | eqtrid 2249 | . . 3 ⊢ (𝑅 ∈ V → (1r‘𝑅) = (0g‘(mulGrp‘𝑅))) |
| 8 | 1, 7 | syl 14 | . 2 ⊢ (𝑅 ∈ 𝑉 → (1r‘𝑅) = (0g‘(mulGrp‘𝑅))) |
| 9 | ringidval.u | . 2 ⊢ 1 = (1r‘𝑅) | |
| 10 | ringidval.g | . . 3 ⊢ 𝐺 = (mulGrp‘𝑅) | |
| 11 | 10 | fveq2i 5578 | . 2 ⊢ (0g‘𝐺) = (0g‘(mulGrp‘𝑅)) |
| 12 | 8, 9, 11 | 3eqtr4g 2262 | 1 ⊢ (𝑅 ∈ 𝑉 → 1 = (0g‘𝐺)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 Vcvv 2771 ∘ ccom 4678 Fn wfn 5265 ‘cfv 5270 0gc0g 13030 mulGrpcmgp 13624 1rcur 13663 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1re 8018 ax-addrcl 8021 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-inn 9036 df-2 9094 df-3 9095 df-ndx 12777 df-slot 12778 df-sets 12781 df-plusg 12864 df-mulr 12865 df-mgp 13625 df-ur 13664 |
| This theorem is referenced by: dfur2g 13666 srgidcl 13680 srgidmlem 13682 issrgid 13685 srgpcomp 13694 srg1expzeq1 13699 ringidcl 13724 ringidmlem 13726 isringid 13729 oppr1g 13786 unitsubm 13823 rngidpropdg 13850 dfrhm2 13858 isrhm2d 13869 rhm1 13871 subrgsubm 13938 issubrg3 13951 cnfldexp 14281 |
| Copyright terms: Public domain | W3C validator |