| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ringidvalg | GIF version | ||
| Description: The value of the unity element of a ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| ringidval.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
| ringidval.u | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| ringidvalg | ⊢ (𝑅 ∈ 𝑉 → 1 = (0g‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2782 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
| 2 | df-ur 13640 | . . . . 5 ⊢ 1r = (0g ∘ mulGrp) | |
| 3 | 2 | fveq1i 5571 | . . . 4 ⊢ (1r‘𝑅) = ((0g ∘ mulGrp)‘𝑅) |
| 4 | fnmgp 13602 | . . . . 5 ⊢ mulGrp Fn V | |
| 5 | fvco2 5642 | . . . . 5 ⊢ ((mulGrp Fn V ∧ 𝑅 ∈ V) → ((0g ∘ mulGrp)‘𝑅) = (0g‘(mulGrp‘𝑅))) | |
| 6 | 4, 5 | mpan 424 | . . . 4 ⊢ (𝑅 ∈ V → ((0g ∘ mulGrp)‘𝑅) = (0g‘(mulGrp‘𝑅))) |
| 7 | 3, 6 | eqtrid 2249 | . . 3 ⊢ (𝑅 ∈ V → (1r‘𝑅) = (0g‘(mulGrp‘𝑅))) |
| 8 | 1, 7 | syl 14 | . 2 ⊢ (𝑅 ∈ 𝑉 → (1r‘𝑅) = (0g‘(mulGrp‘𝑅))) |
| 9 | ringidval.u | . 2 ⊢ 1 = (1r‘𝑅) | |
| 10 | ringidval.g | . . 3 ⊢ 𝐺 = (mulGrp‘𝑅) | |
| 11 | 10 | fveq2i 5573 | . 2 ⊢ (0g‘𝐺) = (0g‘(mulGrp‘𝑅)) |
| 12 | 8, 9, 11 | 3eqtr4g 2262 | 1 ⊢ (𝑅 ∈ 𝑉 → 1 = (0g‘𝐺)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 Vcvv 2771 ∘ ccom 4677 Fn wfn 5263 ‘cfv 5268 0gc0g 13006 mulGrpcmgp 13600 1rcur 13639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1re 8001 ax-addrcl 8004 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-fv 5276 df-ov 5937 df-oprab 5938 df-mpo 5939 df-inn 9019 df-2 9077 df-3 9078 df-ndx 12754 df-slot 12755 df-sets 12758 df-plusg 12841 df-mulr 12842 df-mgp 13601 df-ur 13640 |
| This theorem is referenced by: dfur2g 13642 srgidcl 13656 srgidmlem 13658 issrgid 13661 srgpcomp 13670 srg1expzeq1 13675 ringidcl 13700 ringidmlem 13702 isringid 13705 oppr1g 13762 unitsubm 13799 rngidpropdg 13826 dfrhm2 13834 isrhm2d 13845 rhm1 13847 subrgsubm 13914 issubrg3 13927 cnfldexp 14257 |
| Copyright terms: Public domain | W3C validator |