| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ringidvalg | GIF version | ||
| Description: The value of the unity element of a ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| ringidval.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
| ringidval.u | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| ringidvalg | ⊢ (𝑅 ∈ 𝑉 → 1 = (0g‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2785 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
| 2 | df-ur 13797 | . . . . 5 ⊢ 1r = (0g ∘ mulGrp) | |
| 3 | 2 | fveq1i 5590 | . . . 4 ⊢ (1r‘𝑅) = ((0g ∘ mulGrp)‘𝑅) |
| 4 | fnmgp 13759 | . . . . 5 ⊢ mulGrp Fn V | |
| 5 | fvco2 5661 | . . . . 5 ⊢ ((mulGrp Fn V ∧ 𝑅 ∈ V) → ((0g ∘ mulGrp)‘𝑅) = (0g‘(mulGrp‘𝑅))) | |
| 6 | 4, 5 | mpan 424 | . . . 4 ⊢ (𝑅 ∈ V → ((0g ∘ mulGrp)‘𝑅) = (0g‘(mulGrp‘𝑅))) |
| 7 | 3, 6 | eqtrid 2251 | . . 3 ⊢ (𝑅 ∈ V → (1r‘𝑅) = (0g‘(mulGrp‘𝑅))) |
| 8 | 1, 7 | syl 14 | . 2 ⊢ (𝑅 ∈ 𝑉 → (1r‘𝑅) = (0g‘(mulGrp‘𝑅))) |
| 9 | ringidval.u | . 2 ⊢ 1 = (1r‘𝑅) | |
| 10 | ringidval.g | . . 3 ⊢ 𝐺 = (mulGrp‘𝑅) | |
| 11 | 10 | fveq2i 5592 | . 2 ⊢ (0g‘𝐺) = (0g‘(mulGrp‘𝑅)) |
| 12 | 8, 9, 11 | 3eqtr4g 2264 | 1 ⊢ (𝑅 ∈ 𝑉 → 1 = (0g‘𝐺)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 Vcvv 2773 ∘ ccom 4687 Fn wfn 5275 ‘cfv 5280 0gc0g 13163 mulGrpcmgp 13757 1rcur 13796 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1re 8039 ax-addrcl 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-inn 9057 df-2 9115 df-3 9116 df-ndx 12910 df-slot 12911 df-sets 12914 df-plusg 12997 df-mulr 12998 df-mgp 13758 df-ur 13797 |
| This theorem is referenced by: dfur2g 13799 srgidcl 13813 srgidmlem 13815 issrgid 13818 srgpcomp 13827 srg1expzeq1 13832 ringidcl 13857 ringidmlem 13859 isringid 13862 oppr1g 13919 unitsubm 13956 rngidpropdg 13983 dfrhm2 13991 isrhm2d 14002 rhm1 14004 subrgsubm 14071 issubrg3 14084 cnfldexp 14414 |
| Copyright terms: Public domain | W3C validator |