ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringidvalg GIF version

Theorem ringidvalg 13517
Description: The value of the unity element of a ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
ringidval.g 𝐺 = (mulGrp‘𝑅)
ringidval.u 1 = (1r𝑅)
Assertion
Ref Expression
ringidvalg (𝑅𝑉1 = (0g𝐺))

Proof of Theorem ringidvalg
StepHypRef Expression
1 elex 2774 . . 3 (𝑅𝑉𝑅 ∈ V)
2 df-ur 13516 . . . . 5 1r = (0g ∘ mulGrp)
32fveq1i 5559 . . . 4 (1r𝑅) = ((0g ∘ mulGrp)‘𝑅)
4 fnmgp 13478 . . . . 5 mulGrp Fn V
5 fvco2 5630 . . . . 5 ((mulGrp Fn V ∧ 𝑅 ∈ V) → ((0g ∘ mulGrp)‘𝑅) = (0g‘(mulGrp‘𝑅)))
64, 5mpan 424 . . . 4 (𝑅 ∈ V → ((0g ∘ mulGrp)‘𝑅) = (0g‘(mulGrp‘𝑅)))
73, 6eqtrid 2241 . . 3 (𝑅 ∈ V → (1r𝑅) = (0g‘(mulGrp‘𝑅)))
81, 7syl 14 . 2 (𝑅𝑉 → (1r𝑅) = (0g‘(mulGrp‘𝑅)))
9 ringidval.u . 2 1 = (1r𝑅)
10 ringidval.g . . 3 𝐺 = (mulGrp‘𝑅)
1110fveq2i 5561 . 2 (0g𝐺) = (0g‘(mulGrp‘𝑅))
128, 9, 113eqtr4g 2254 1 (𝑅𝑉1 = (0g𝐺))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  Vcvv 2763  ccom 4667   Fn wfn 5253  cfv 5258  0gc0g 12927  mulGrpcmgp 13476  1rcur 13515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-sets 12685  df-plusg 12768  df-mulr 12769  df-mgp 13477  df-ur 13516
This theorem is referenced by:  dfur2g  13518  srgidcl  13532  srgidmlem  13534  issrgid  13537  srgpcomp  13546  srg1expzeq1  13551  ringidcl  13576  ringidmlem  13578  isringid  13581  oppr1g  13638  unitsubm  13675  rngidpropdg  13702  dfrhm2  13710  isrhm2d  13721  rhm1  13723  subrgsubm  13790  issubrg3  13803  cnfldexp  14133
  Copyright terms: Public domain W3C validator