| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ringidvalg | GIF version | ||
| Description: The value of the unity element of a ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) | 
| Ref | Expression | 
|---|---|
| ringidval.g | ⊢ 𝐺 = (mulGrp‘𝑅) | 
| ringidval.u | ⊢ 1 = (1r‘𝑅) | 
| Ref | Expression | 
|---|---|
| ringidvalg | ⊢ (𝑅 ∈ 𝑉 → 1 = (0g‘𝐺)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elex 2774 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
| 2 | df-ur 13516 | . . . . 5 ⊢ 1r = (0g ∘ mulGrp) | |
| 3 | 2 | fveq1i 5559 | . . . 4 ⊢ (1r‘𝑅) = ((0g ∘ mulGrp)‘𝑅) | 
| 4 | fnmgp 13478 | . . . . 5 ⊢ mulGrp Fn V | |
| 5 | fvco2 5630 | . . . . 5 ⊢ ((mulGrp Fn V ∧ 𝑅 ∈ V) → ((0g ∘ mulGrp)‘𝑅) = (0g‘(mulGrp‘𝑅))) | |
| 6 | 4, 5 | mpan 424 | . . . 4 ⊢ (𝑅 ∈ V → ((0g ∘ mulGrp)‘𝑅) = (0g‘(mulGrp‘𝑅))) | 
| 7 | 3, 6 | eqtrid 2241 | . . 3 ⊢ (𝑅 ∈ V → (1r‘𝑅) = (0g‘(mulGrp‘𝑅))) | 
| 8 | 1, 7 | syl 14 | . 2 ⊢ (𝑅 ∈ 𝑉 → (1r‘𝑅) = (0g‘(mulGrp‘𝑅))) | 
| 9 | ringidval.u | . 2 ⊢ 1 = (1r‘𝑅) | |
| 10 | ringidval.g | . . 3 ⊢ 𝐺 = (mulGrp‘𝑅) | |
| 11 | 10 | fveq2i 5561 | . 2 ⊢ (0g‘𝐺) = (0g‘(mulGrp‘𝑅)) | 
| 12 | 8, 9, 11 | 3eqtr4g 2254 | 1 ⊢ (𝑅 ∈ 𝑉 → 1 = (0g‘𝐺)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ∘ ccom 4667 Fn wfn 5253 ‘cfv 5258 0gc0g 12927 mulGrpcmgp 13476 1rcur 13515 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-inn 8991 df-2 9049 df-3 9050 df-ndx 12681 df-slot 12682 df-sets 12685 df-plusg 12768 df-mulr 12769 df-mgp 13477 df-ur 13516 | 
| This theorem is referenced by: dfur2g 13518 srgidcl 13532 srgidmlem 13534 issrgid 13537 srgpcomp 13546 srg1expzeq1 13551 ringidcl 13576 ringidmlem 13578 isringid 13581 oppr1g 13638 unitsubm 13675 rngidpropdg 13702 dfrhm2 13710 isrhm2d 13721 rhm1 13723 subrgsubm 13790 issubrg3 13803 cnfldexp 14133 | 
| Copyright terms: Public domain | W3C validator |