![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ringidvalg | GIF version |
Description: The value of the unity element of a ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
ringidval.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
ringidval.u | ⊢ 1 = (1r‘𝑅) |
Ref | Expression |
---|---|
ringidvalg | ⊢ (𝑅 ∈ 𝑉 → 1 = (0g‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2763 | . . 3 ⊢ (𝑅 ∈ 𝑉 → 𝑅 ∈ V) | |
2 | df-ur 13314 | . . . . 5 ⊢ 1r = (0g ∘ mulGrp) | |
3 | 2 | fveq1i 5535 | . . . 4 ⊢ (1r‘𝑅) = ((0g ∘ mulGrp)‘𝑅) |
4 | fnmgp 13276 | . . . . 5 ⊢ mulGrp Fn V | |
5 | fvco2 5606 | . . . . 5 ⊢ ((mulGrp Fn V ∧ 𝑅 ∈ V) → ((0g ∘ mulGrp)‘𝑅) = (0g‘(mulGrp‘𝑅))) | |
6 | 4, 5 | mpan 424 | . . . 4 ⊢ (𝑅 ∈ V → ((0g ∘ mulGrp)‘𝑅) = (0g‘(mulGrp‘𝑅))) |
7 | 3, 6 | eqtrid 2234 | . . 3 ⊢ (𝑅 ∈ V → (1r‘𝑅) = (0g‘(mulGrp‘𝑅))) |
8 | 1, 7 | syl 14 | . 2 ⊢ (𝑅 ∈ 𝑉 → (1r‘𝑅) = (0g‘(mulGrp‘𝑅))) |
9 | ringidval.u | . 2 ⊢ 1 = (1r‘𝑅) | |
10 | ringidval.g | . . 3 ⊢ 𝐺 = (mulGrp‘𝑅) | |
11 | 10 | fveq2i 5537 | . 2 ⊢ (0g‘𝐺) = (0g‘(mulGrp‘𝑅)) |
12 | 8, 9, 11 | 3eqtr4g 2247 | 1 ⊢ (𝑅 ∈ 𝑉 → 1 = (0g‘𝐺)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2160 Vcvv 2752 ∘ ccom 4648 Fn wfn 5230 ‘cfv 5235 0gc0g 12761 mulGrpcmgp 13274 1rcur 13313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7932 ax-resscn 7933 ax-1re 7935 ax-addrcl 7938 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2754 df-sbc 2978 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-fv 5243 df-ov 5899 df-oprab 5900 df-mpo 5901 df-inn 8950 df-2 9008 df-3 9009 df-ndx 12515 df-slot 12516 df-sets 12519 df-plusg 12602 df-mulr 12603 df-mgp 13275 df-ur 13314 |
This theorem is referenced by: dfur2g 13316 srgidcl 13330 srgidmlem 13332 issrgid 13335 srgpcomp 13344 srg1expzeq1 13349 ringidcl 13374 ringidmlem 13376 isringid 13379 oppr1g 13432 unitsubm 13469 rngidpropdg 13496 dfrhm2 13504 isrhm2d 13515 rhm1 13517 subrgsubm 13581 issubrg3 13594 cnfldexp 13880 |
Copyright terms: Public domain | W3C validator |