ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnrhmsubrg Unicode version

Theorem rnrhmsubrg 13751
Description: The range of a ring homomorphism is a subring. (Contributed by SN, 18-Nov-2023.)
Assertion
Ref Expression
rnrhmsubrg  |-  ( F  e.  ( M RingHom  N
)  ->  ran  F  e.  (SubRing `  N )
)

Proof of Theorem rnrhmsubrg
StepHypRef Expression
1 df-ima 4673 . . 3  |-  ( F
" ( Base `  M
) )  =  ran  ( F  |`  ( Base `  M ) )
2 eqid 2193 . . . . . . 7  |-  ( Base `  M )  =  (
Base `  M )
3 eqid 2193 . . . . . . 7  |-  ( Base `  N )  =  (
Base `  N )
42, 3rhmf 13662 . . . . . 6  |-  ( F  e.  ( M RingHom  N
)  ->  F :
( Base `  M ) --> ( Base `  N )
)
54ffnd 5405 . . . . 5  |-  ( F  e.  ( M RingHom  N
)  ->  F  Fn  ( Base `  M )
)
6 fnresdm 5364 . . . . 5  |-  ( F  Fn  ( Base `  M
)  ->  ( F  |`  ( Base `  M
) )  =  F )
75, 6syl 14 . . . 4  |-  ( F  e.  ( M RingHom  N
)  ->  ( F  |`  ( Base `  M
) )  =  F )
87rneqd 4892 . . 3  |-  ( F  e.  ( M RingHom  N
)  ->  ran  ( F  |`  ( Base `  M
) )  =  ran  F )
91, 8eqtr2id 2239 . 2  |-  ( F  e.  ( M RingHom  N
)  ->  ran  F  =  ( F " ( Base `  M ) ) )
10 rhmrcl1 13654 . . . 4  |-  ( F  e.  ( M RingHom  N
)  ->  M  e.  Ring )
112subrgid 13722 . . . 4  |-  ( M  e.  Ring  ->  ( Base `  M )  e.  (SubRing `  M ) )
1210, 11syl 14 . . 3  |-  ( F  e.  ( M RingHom  N
)  ->  ( Base `  M )  e.  (SubRing `  M ) )
13 rhmima 13750 . . 3  |-  ( ( F  e.  ( M RingHom  N )  /\  ( Base `  M )  e.  (SubRing `  M )
)  ->  ( F " ( Base `  M
) )  e.  (SubRing `  N ) )
1412, 13mpdan 421 . 2  |-  ( F  e.  ( M RingHom  N
)  ->  ( F " ( Base `  M
) )  e.  (SubRing `  N ) )
159, 14eqeltrd 2270 1  |-  ( F  e.  ( M RingHom  N
)  ->  ran  F  e.  (SubRing `  N )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   ran crn 4661    |` cres 4662   "cima 4663    Fn wfn 5250   ` cfv 5255  (class class class)co 5919   Basecbs 12621   Ringcrg 13495   RingHom crh 13649  SubRingcsubrg 13716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-map 6706  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-plusg 12711  df-mulr 12712  df-0g 12872  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-mhm 13034  df-submnd 13035  df-grp 13078  df-minusg 13079  df-subg 13243  df-ghm 13314  df-mgp 13420  df-ur 13459  df-ring 13497  df-rhm 13651  df-subrg 13718
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator