ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnrhmsubrg Unicode version

Theorem rnrhmsubrg 13884
Description: The range of a ring homomorphism is a subring. (Contributed by SN, 18-Nov-2023.)
Assertion
Ref Expression
rnrhmsubrg  |-  ( F  e.  ( M RingHom  N
)  ->  ran  F  e.  (SubRing `  N )
)

Proof of Theorem rnrhmsubrg
StepHypRef Expression
1 df-ima 4677 . . 3  |-  ( F
" ( Base `  M
) )  =  ran  ( F  |`  ( Base `  M ) )
2 eqid 2196 . . . . . . 7  |-  ( Base `  M )  =  (
Base `  M )
3 eqid 2196 . . . . . . 7  |-  ( Base `  N )  =  (
Base `  N )
42, 3rhmf 13795 . . . . . 6  |-  ( F  e.  ( M RingHom  N
)  ->  F :
( Base `  M ) --> ( Base `  N )
)
54ffnd 5411 . . . . 5  |-  ( F  e.  ( M RingHom  N
)  ->  F  Fn  ( Base `  M )
)
6 fnresdm 5370 . . . . 5  |-  ( F  Fn  ( Base `  M
)  ->  ( F  |`  ( Base `  M
) )  =  F )
75, 6syl 14 . . . 4  |-  ( F  e.  ( M RingHom  N
)  ->  ( F  |`  ( Base `  M
) )  =  F )
87rneqd 4896 . . 3  |-  ( F  e.  ( M RingHom  N
)  ->  ran  ( F  |`  ( Base `  M
) )  =  ran  F )
91, 8eqtr2id 2242 . 2  |-  ( F  e.  ( M RingHom  N
)  ->  ran  F  =  ( F " ( Base `  M ) ) )
10 rhmrcl1 13787 . . . 4  |-  ( F  e.  ( M RingHom  N
)  ->  M  e.  Ring )
112subrgid 13855 . . . 4  |-  ( M  e.  Ring  ->  ( Base `  M )  e.  (SubRing `  M ) )
1210, 11syl 14 . . 3  |-  ( F  e.  ( M RingHom  N
)  ->  ( Base `  M )  e.  (SubRing `  M ) )
13 rhmima 13883 . . 3  |-  ( ( F  e.  ( M RingHom  N )  /\  ( Base `  M )  e.  (SubRing `  M )
)  ->  ( F " ( Base `  M
) )  e.  (SubRing `  N ) )
1412, 13mpdan 421 . 2  |-  ( F  e.  ( M RingHom  N
)  ->  ( F " ( Base `  M
) )  e.  (SubRing `  N ) )
159, 14eqeltrd 2273 1  |-  ( F  e.  ( M RingHom  N
)  ->  ran  F  e.  (SubRing `  N )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   ran crn 4665    |` cres 4666   "cima 4667    Fn wfn 5254   ` cfv 5259  (class class class)co 5925   Basecbs 12703   Ringcrg 13628   RingHom crh 13782  SubRingcsubrg 13849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-map 6718  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-plusg 12793  df-mulr 12794  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-mhm 13161  df-submnd 13162  df-grp 13205  df-minusg 13206  df-subg 13376  df-ghm 13447  df-mgp 13553  df-ur 13592  df-ring 13630  df-rhm 13784  df-subrg 13851
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator