ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnrhmsubrg Unicode version

Theorem rnrhmsubrg 14058
Description: The range of a ring homomorphism is a subring. (Contributed by SN, 18-Nov-2023.)
Assertion
Ref Expression
rnrhmsubrg  |-  ( F  e.  ( M RingHom  N
)  ->  ran  F  e.  (SubRing `  N )
)

Proof of Theorem rnrhmsubrg
StepHypRef Expression
1 df-ima 4692 . . 3  |-  ( F
" ( Base `  M
) )  =  ran  ( F  |`  ( Base `  M ) )
2 eqid 2206 . . . . . . 7  |-  ( Base `  M )  =  (
Base `  M )
3 eqid 2206 . . . . . . 7  |-  ( Base `  N )  =  (
Base `  N )
42, 3rhmf 13969 . . . . . 6  |-  ( F  e.  ( M RingHom  N
)  ->  F :
( Base `  M ) --> ( Base `  N )
)
54ffnd 5432 . . . . 5  |-  ( F  e.  ( M RingHom  N
)  ->  F  Fn  ( Base `  M )
)
6 fnresdm 5390 . . . . 5  |-  ( F  Fn  ( Base `  M
)  ->  ( F  |`  ( Base `  M
) )  =  F )
75, 6syl 14 . . . 4  |-  ( F  e.  ( M RingHom  N
)  ->  ( F  |`  ( Base `  M
) )  =  F )
87rneqd 4912 . . 3  |-  ( F  e.  ( M RingHom  N
)  ->  ran  ( F  |`  ( Base `  M
) )  =  ran  F )
91, 8eqtr2id 2252 . 2  |-  ( F  e.  ( M RingHom  N
)  ->  ran  F  =  ( F " ( Base `  M ) ) )
10 rhmrcl1 13961 . . . 4  |-  ( F  e.  ( M RingHom  N
)  ->  M  e.  Ring )
112subrgid 14029 . . . 4  |-  ( M  e.  Ring  ->  ( Base `  M )  e.  (SubRing `  M ) )
1210, 11syl 14 . . 3  |-  ( F  e.  ( M RingHom  N
)  ->  ( Base `  M )  e.  (SubRing `  M ) )
13 rhmima 14057 . . 3  |-  ( ( F  e.  ( M RingHom  N )  /\  ( Base `  M )  e.  (SubRing `  M )
)  ->  ( F " ( Base `  M
) )  e.  (SubRing `  N ) )
1412, 13mpdan 421 . 2  |-  ( F  e.  ( M RingHom  N
)  ->  ( F " ( Base `  M
) )  e.  (SubRing `  N ) )
159, 14eqeltrd 2283 1  |-  ( F  e.  ( M RingHom  N
)  ->  ran  F  e.  (SubRing `  N )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2177   ran crn 4680    |` cres 4681   "cima 4682    Fn wfn 5271   ` cfv 5276  (class class class)co 5951   Basecbs 12876   Ringcrg 13802   RingHom crh 13956  SubRingcsubrg 14023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-pre-ltirr 8044  ax-pre-lttrn 8046  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-1st 6233  df-2nd 6234  df-map 6744  df-pnf 8116  df-mnf 8117  df-ltxr 8119  df-inn 9044  df-2 9102  df-3 9103  df-ndx 12879  df-slot 12880  df-base 12882  df-sets 12883  df-iress 12884  df-plusg 12966  df-mulr 12967  df-0g 13134  df-mgm 13232  df-sgrp 13278  df-mnd 13293  df-mhm 13335  df-submnd 13336  df-grp 13379  df-minusg 13380  df-subg 13550  df-ghm 13621  df-mgp 13727  df-ur 13766  df-ring 13804  df-rhm 13958  df-subrg 14025
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator