ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnrhmsubrg Unicode version

Theorem rnrhmsubrg 13808
Description: The range of a ring homomorphism is a subring. (Contributed by SN, 18-Nov-2023.)
Assertion
Ref Expression
rnrhmsubrg  |-  ( F  e.  ( M RingHom  N
)  ->  ran  F  e.  (SubRing `  N )
)

Proof of Theorem rnrhmsubrg
StepHypRef Expression
1 df-ima 4676 . . 3  |-  ( F
" ( Base `  M
) )  =  ran  ( F  |`  ( Base `  M ) )
2 eqid 2196 . . . . . . 7  |-  ( Base `  M )  =  (
Base `  M )
3 eqid 2196 . . . . . . 7  |-  ( Base `  N )  =  (
Base `  N )
42, 3rhmf 13719 . . . . . 6  |-  ( F  e.  ( M RingHom  N
)  ->  F :
( Base `  M ) --> ( Base `  N )
)
54ffnd 5408 . . . . 5  |-  ( F  e.  ( M RingHom  N
)  ->  F  Fn  ( Base `  M )
)
6 fnresdm 5367 . . . . 5  |-  ( F  Fn  ( Base `  M
)  ->  ( F  |`  ( Base `  M
) )  =  F )
75, 6syl 14 . . . 4  |-  ( F  e.  ( M RingHom  N
)  ->  ( F  |`  ( Base `  M
) )  =  F )
87rneqd 4895 . . 3  |-  ( F  e.  ( M RingHom  N
)  ->  ran  ( F  |`  ( Base `  M
) )  =  ran  F )
91, 8eqtr2id 2242 . 2  |-  ( F  e.  ( M RingHom  N
)  ->  ran  F  =  ( F " ( Base `  M ) ) )
10 rhmrcl1 13711 . . . 4  |-  ( F  e.  ( M RingHom  N
)  ->  M  e.  Ring )
112subrgid 13779 . . . 4  |-  ( M  e.  Ring  ->  ( Base `  M )  e.  (SubRing `  M ) )
1210, 11syl 14 . . 3  |-  ( F  e.  ( M RingHom  N
)  ->  ( Base `  M )  e.  (SubRing `  M ) )
13 rhmima 13807 . . 3  |-  ( ( F  e.  ( M RingHom  N )  /\  ( Base `  M )  e.  (SubRing `  M )
)  ->  ( F " ( Base `  M
) )  e.  (SubRing `  N ) )
1412, 13mpdan 421 . 2  |-  ( F  e.  ( M RingHom  N
)  ->  ( F " ( Base `  M
) )  e.  (SubRing `  N ) )
159, 14eqeltrd 2273 1  |-  ( F  e.  ( M RingHom  N
)  ->  ran  F  e.  (SubRing `  N )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   ran crn 4664    |` cres 4665   "cima 4666    Fn wfn 5253   ` cfv 5258  (class class class)co 5922   Basecbs 12678   Ringcrg 13552   RingHom crh 13706  SubRingcsubrg 13773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-map 6709  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-mulr 12769  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-mhm 13091  df-submnd 13092  df-grp 13135  df-minusg 13136  df-subg 13300  df-ghm 13371  df-mgp 13477  df-ur 13516  df-ring 13554  df-rhm 13708  df-subrg 13775
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator