| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subgabl | GIF version | ||
| Description: A subgroup of an abelian group is also abelian. (Contributed by Mario Carneiro, 3-Dec-2014.) |
| Ref | Expression |
|---|---|
| subgabl.h | ⊢ 𝐻 = (𝐺 ↾s 𝑆) |
| Ref | Expression |
|---|---|
| subgabl | ⊢ ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Abel) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgabl.h | . . . 4 ⊢ 𝐻 = (𝐺 ↾s 𝑆) | |
| 2 | 1 | subgbas 13589 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻)) |
| 3 | 2 | adantl 277 | . 2 ⊢ ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 = (Base‘𝐻)) |
| 4 | 1 | a1i 9 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 = (𝐺 ↾s 𝑆)) |
| 5 | eqid 2206 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 6 | 5 | a1i 9 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (+g‘𝐺) = (+g‘𝐺)) |
| 7 | simpr 110 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 ∈ (SubGrp‘𝐺)) | |
| 8 | simpl 109 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐺 ∈ Abel) | |
| 9 | 4, 6, 7, 8 | ressplusgd 13036 | . 2 ⊢ ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (+g‘𝐺) = (+g‘𝐻)) |
| 10 | 1 | subggrp 13588 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp) |
| 11 | 10 | adantl 277 | . 2 ⊢ ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Grp) |
| 12 | simp1l 1024 | . . 3 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → 𝐺 ∈ Abel) | |
| 13 | simp1r 1025 | . . . . 5 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → 𝑆 ∈ (SubGrp‘𝐺)) | |
| 14 | eqid 2206 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 15 | 14 | subgss 13585 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
| 16 | 13, 15 | syl 14 | . . . 4 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → 𝑆 ⊆ (Base‘𝐺)) |
| 17 | simp2 1001 | . . . 4 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝑆) | |
| 18 | 16, 17 | sseldd 3198 | . . 3 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → 𝑥 ∈ (Base‘𝐺)) |
| 19 | simp3 1002 | . . . 4 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝑆) | |
| 20 | 16, 19 | sseldd 3198 | . . 3 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ (Base‘𝐺)) |
| 21 | 14, 5 | ablcom 13714 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) |
| 22 | 12, 18, 20, 21 | syl3anc 1250 | . 2 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) |
| 23 | 3, 9, 11, 22 | isabld 13710 | 1 ⊢ ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Abel) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ⊆ wss 3170 ‘cfv 5280 (class class class)co 5957 Basecbs 12907 ↾s cress 12908 +gcplusg 12984 Grpcgrp 13407 SubGrpcsubg 13578 Abelcabl 13696 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-i2m1 8050 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-pre-ltirr 8057 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-fv 5288 df-ov 5960 df-oprab 5961 df-mpo 5962 df-pnf 8129 df-mnf 8130 df-ltxr 8132 df-inn 9057 df-2 9115 df-ndx 12910 df-slot 12911 df-base 12913 df-sets 12914 df-iress 12915 df-plusg 12997 df-grp 13410 df-subg 13581 df-cmn 13697 df-abl 13698 |
| This theorem is referenced by: issubrng2 14047 rnglidlrng 14335 |
| Copyright terms: Public domain | W3C validator |