ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subgabl GIF version

Theorem subgabl 13540
Description: A subgroup of an abelian group is also abelian. (Contributed by Mario Carneiro, 3-Dec-2014.)
Hypothesis
Ref Expression
subgabl.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
subgabl ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Abel)

Proof of Theorem subgabl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subgabl.h . . . 4 𝐻 = (𝐺s 𝑆)
21subgbas 13386 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻))
32adantl 277 . 2 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 = (Base‘𝐻))
41a1i 9 . . 3 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 = (𝐺s 𝑆))
5 eqid 2196 . . . 4 (+g𝐺) = (+g𝐺)
65a1i 9 . . 3 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (+g𝐺) = (+g𝐺))
7 simpr 110 . . 3 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 ∈ (SubGrp‘𝐺))
8 simpl 109 . . 3 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐺 ∈ Abel)
94, 6, 7, 8ressplusgd 12833 . 2 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (+g𝐺) = (+g𝐻))
101subggrp 13385 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
1110adantl 277 . 2 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Grp)
12 simp1l 1023 . . 3 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑆𝑦𝑆) → 𝐺 ∈ Abel)
13 simp1r 1024 . . . . 5 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑆𝑦𝑆) → 𝑆 ∈ (SubGrp‘𝐺))
14 eqid 2196 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
1514subgss 13382 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
1613, 15syl 14 . . . 4 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑆𝑦𝑆) → 𝑆 ⊆ (Base‘𝐺))
17 simp2 1000 . . . 4 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑆𝑦𝑆) → 𝑥𝑆)
1816, 17sseldd 3185 . . 3 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑆𝑦𝑆) → 𝑥 ∈ (Base‘𝐺))
19 simp3 1001 . . . 4 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑆𝑦𝑆) → 𝑦𝑆)
2016, 19sseldd 3185 . . 3 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑆𝑦𝑆) → 𝑦 ∈ (Base‘𝐺))
2114, 5ablcom 13511 . . 3 ((𝐺 ∈ Abel ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
2212, 18, 20, 21syl3anc 1249 . 2 (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥𝑆𝑦𝑆) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
233, 9, 11, 22isabld 13507 1 ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Abel)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2167  wss 3157  cfv 5259  (class class class)co 5925  Basecbs 12705  s cress 12706  +gcplusg 12782  Grpcgrp 13204  SubGrpcsubg 13375  Abelcabl 13493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-addcom 7998  ax-addass 8000  ax-i2m1 8003  ax-0lt1 8004  ax-0id 8006  ax-rnegex 8007  ax-pre-ltirr 8010  ax-pre-ltadd 8014
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8082  df-mnf 8083  df-ltxr 8085  df-inn 9010  df-2 9068  df-ndx 12708  df-slot 12709  df-base 12711  df-sets 12712  df-iress 12713  df-plusg 12795  df-grp 13207  df-subg 13378  df-cmn 13494  df-abl 13495
This theorem is referenced by:  issubrng2  13844  rnglidlrng  14132
  Copyright terms: Public domain W3C validator