| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subgabl | GIF version | ||
| Description: A subgroup of an abelian group is also abelian. (Contributed by Mario Carneiro, 3-Dec-2014.) |
| Ref | Expression |
|---|---|
| subgabl.h | ⊢ 𝐻 = (𝐺 ↾s 𝑆) |
| Ref | Expression |
|---|---|
| subgabl | ⊢ ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Abel) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgabl.h | . . . 4 ⊢ 𝐻 = (𝐺 ↾s 𝑆) | |
| 2 | 1 | subgbas 13432 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻)) |
| 3 | 2 | adantl 277 | . 2 ⊢ ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 = (Base‘𝐻)) |
| 4 | 1 | a1i 9 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 = (𝐺 ↾s 𝑆)) |
| 5 | eqid 2204 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 6 | 5 | a1i 9 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (+g‘𝐺) = (+g‘𝐺)) |
| 7 | simpr 110 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝑆 ∈ (SubGrp‘𝐺)) | |
| 8 | simpl 109 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐺 ∈ Abel) | |
| 9 | 4, 6, 7, 8 | ressplusgd 12879 | . 2 ⊢ ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → (+g‘𝐺) = (+g‘𝐻)) |
| 10 | 1 | subggrp 13431 | . . 3 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp) |
| 11 | 10 | adantl 277 | . 2 ⊢ ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Grp) |
| 12 | simp1l 1023 | . . 3 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → 𝐺 ∈ Abel) | |
| 13 | simp1r 1024 | . . . . 5 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → 𝑆 ∈ (SubGrp‘𝐺)) | |
| 14 | eqid 2204 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 15 | 14 | subgss 13428 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
| 16 | 13, 15 | syl 14 | . . . 4 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → 𝑆 ⊆ (Base‘𝐺)) |
| 17 | simp2 1000 | . . . 4 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → 𝑥 ∈ 𝑆) | |
| 18 | 16, 17 | sseldd 3193 | . . 3 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → 𝑥 ∈ (Base‘𝐺)) |
| 19 | simp3 1001 | . . . 4 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ 𝑆) | |
| 20 | 16, 19 | sseldd 3193 | . . 3 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → 𝑦 ∈ (Base‘𝐺)) |
| 21 | 14, 5 | ablcom 13557 | . . 3 ⊢ ((𝐺 ∈ Abel ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) |
| 22 | 12, 18, 20, 21 | syl3anc 1249 | . 2 ⊢ (((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥)) |
| 23 | 3, 9, 11, 22 | isabld 13553 | 1 ⊢ ((𝐺 ∈ Abel ∧ 𝑆 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Abel) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 = wceq 1372 ∈ wcel 2175 ⊆ wss 3165 ‘cfv 5268 (class class class)co 5934 Basecbs 12751 ↾s cress 12752 +gcplusg 12828 Grpcgrp 13250 SubGrpcsubg 13421 Abelcabl 13539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-addcom 8007 ax-addass 8009 ax-i2m1 8012 ax-0lt1 8013 ax-0id 8015 ax-rnegex 8016 ax-pre-ltirr 8019 ax-pre-ltadd 8023 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-fv 5276 df-ov 5937 df-oprab 5938 df-mpo 5939 df-pnf 8091 df-mnf 8092 df-ltxr 8094 df-inn 9019 df-2 9077 df-ndx 12754 df-slot 12755 df-base 12757 df-sets 12758 df-iress 12759 df-plusg 12841 df-grp 13253 df-subg 13424 df-cmn 13540 df-abl 13541 |
| This theorem is referenced by: issubrng2 13890 rnglidlrng 14178 |
| Copyright terms: Public domain | W3C validator |