ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subidd GIF version

Theorem subidd 8378
Description: Subtraction of a number from itself. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
negidd.1 (𝜑𝐴 ∈ ℂ)
Assertion
Ref Expression
subidd (𝜑 → (𝐴𝐴) = 0)

Proof of Theorem subidd
StepHypRef Expression
1 negidd.1 . 2 (𝜑𝐴 ∈ ℂ)
2 subid 8298 . 2 (𝐴 ∈ ℂ → (𝐴𝐴) = 0)
31, 2syl 14 1 (𝜑 → (𝐴𝐴) = 0)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177  (class class class)co 5951  cc 7930  0cc0 7932  cmin 8250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-setind 4589  ax-resscn 8024  ax-1cn 8025  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-distr 8036  ax-i2m1 8037  ax-0id 8040  ax-rnegex 8041  ax-cnre 8043
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-opab 4110  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-iota 5237  df-fun 5278  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-sub 8252
This theorem is referenced by:  mul02  8466  leaddle0  8557  cru  8682  iccf1o  10133  fzocatel  10335  zmod10  10492  hashfzo  10974  hashfzp1  10976  ccatval21sw  11069  ccats1val2  11100  swrd00g  11110  ccatpfx  11160  resqrexlemnm  11373  bdtri  11595  climconst  11645  telfsumo  11821  fsumparts  11825  cvgratnnlemmn  11880  cvgratnnlemseq  11881  nn0seqcvgd  12407  pcmpt2  12711  4sqlem15  12772  gsumfzconst  13721  gsumfzsnfd  13725  cncfmptc  15112  limcimolemlt  15180  dvconstss  15214  dvcnp2cntop  15215
  Copyright terms: Public domain W3C validator