ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  umgrnloop2 Unicode version

Theorem umgrnloop2 15943
Description: A multigraph has no loops. (Contributed by AV, 27-Oct-2020.) (Revised by AV, 30-Nov-2020.)
Assertion
Ref Expression
umgrnloop2  |-  ( G  e. UMGraph  ->  { N ,  N }  e/  (Edg `  G ) )

Proof of Theorem umgrnloop2
StepHypRef Expression
1 eqid 2229 . . . . 5  |-  (Vtx `  G )  =  (Vtx
`  G )
2 eqid 2229 . . . . 5  |-  (Edg `  G )  =  (Edg
`  G )
31, 2umgrpredgv 15939 . . . 4  |-  ( ( G  e. UMGraph  /\  { N ,  N }  e.  (Edg
`  G ) )  ->  ( N  e.  (Vtx `  G )  /\  N  e.  (Vtx `  G ) ) )
43simpld 112 . . 3  |-  ( ( G  e. UMGraph  /\  { N ,  N }  e.  (Edg
`  G ) )  ->  N  e.  (Vtx
`  G ) )
5 eqid 2229 . . . 4  |-  N  =  N
62umgredgne 15942 . . . 4  |-  ( ( G  e. UMGraph  /\  { N ,  N }  e.  (Edg
`  G ) )  ->  N  =/=  N
)
7 eqneqall 2410 . . . 4  |-  ( N  =  N  ->  ( N  =/=  N  ->  -.  N  e.  (Vtx `  G
) ) )
85, 6, 7mpsyl 65 . . 3  |-  ( ( G  e. UMGraph  /\  { N ,  N }  e.  (Edg
`  G ) )  ->  -.  N  e.  (Vtx `  G ) )
94, 8pm2.65da 665 . 2  |-  ( G  e. UMGraph  ->  -.  { N ,  N }  e.  (Edg
`  G ) )
10 df-nel 2496 . 2  |-  ( { N ,  N }  e/  (Edg `  G )  <->  -. 
{ N ,  N }  e.  (Edg `  G
) )
119, 10sylibr 134 1  |-  ( G  e. UMGraph  ->  { N ,  N }  e/  (Edg `  G ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200    =/= wne 2400    e/ wnel 2495   {cpr 3667   ` cfv 5317  Vtxcvtx 15807  Edgcedg 15852  UMGraphcumgr 15886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-1o 6560  df-2o 6561  df-er 6678  df-en 6886  df-sub 8315  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-5 9168  df-6 9169  df-7 9170  df-8 9171  df-9 9172  df-n0 9366  df-dec 9575  df-ndx 13030  df-slot 13031  df-base 13033  df-edgf 15800  df-vtx 15809  df-iedg 15810  df-edg 15853  df-umgren 15888
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator