ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isumgren Unicode version

Theorem isumgren 15751
Description: The property of being an undirected multigraph. (Contributed by AV, 24-Nov-2020.)
Hypotheses
Ref Expression
isumgr.v  |-  V  =  (Vtx `  G )
isumgr.e  |-  E  =  (iEdg `  G )
Assertion
Ref Expression
isumgren  |-  ( G  e.  U  ->  ( G  e. UMGraph  <->  E : dom  E --> { x  e.  ~P V  |  x  ~~  2o } ) )
Distinct variable groups:    x, G    x, V
Allowed substitution hints:    U( x)    E( x)

Proof of Theorem isumgren
Dummy variables  e  g  h  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-umgren 15740 . . 3  |- UMGraph  =  {
g  |  [. (Vtx `  g )  /  v ]. [. (iEdg `  g
)  /  e ]. e : dom  e --> { x  e.  ~P v  |  x  ~~  2o } }
21eleq2i 2273 . 2  |-  ( G  e. UMGraph 
<->  G  e.  { g  |  [. (Vtx `  g )  /  v ]. [. (iEdg `  g
)  /  e ]. e : dom  e --> { x  e.  ~P v  |  x  ~~  2o } } )
3 fveq2 5586 . . . . 5  |-  ( h  =  G  ->  (iEdg `  h )  =  (iEdg `  G ) )
4 isumgr.e . . . . 5  |-  E  =  (iEdg `  G )
53, 4eqtr4di 2257 . . . 4  |-  ( h  =  G  ->  (iEdg `  h )  =  E )
63dmeqd 4886 . . . . 5  |-  ( h  =  G  ->  dom  (iEdg `  h )  =  dom  (iEdg `  G
) )
74eqcomi 2210 . . . . . 6  |-  (iEdg `  G )  =  E
87dmeqi 4885 . . . . 5  |-  dom  (iEdg `  G )  =  dom  E
96, 8eqtrdi 2255 . . . 4  |-  ( h  =  G  ->  dom  (iEdg `  h )  =  dom  E )
10 fveq2 5586 . . . . . . 7  |-  ( h  =  G  ->  (Vtx `  h )  =  (Vtx
`  G ) )
11 isumgr.v . . . . . . 7  |-  V  =  (Vtx `  G )
1210, 11eqtr4di 2257 . . . . . 6  |-  ( h  =  G  ->  (Vtx `  h )  =  V )
1312pweqd 3623 . . . . 5  |-  ( h  =  G  ->  ~P (Vtx `  h )  =  ~P V )
1413rabeqdv 2767 . . . 4  |-  ( h  =  G  ->  { x  e.  ~P (Vtx `  h
)  |  x  ~~  2o }  =  { x  e.  ~P V  |  x 
~~  2o } )
155, 9, 14feq123d 5423 . . 3  |-  ( h  =  G  ->  (
(iEdg `  h ) : dom  (iEdg `  h
) --> { x  e. 
~P (Vtx `  h
)  |  x  ~~  2o }  <->  E : dom  E --> { x  e.  ~P V  |  x  ~~  2o } ) )
16 vtxex 15667 . . . . . . 7  |-  ( g  e.  _V  ->  (Vtx `  g )  e.  _V )
1716elv 2777 . . . . . 6  |-  (Vtx `  g )  e.  _V
1817a1i 9 . . . . 5  |-  ( g  =  h  ->  (Vtx `  g )  e.  _V )
19 fveq2 5586 . . . . 5  |-  ( g  =  h  ->  (Vtx `  g )  =  (Vtx
`  h ) )
20 iedgex 15668 . . . . . . . 8  |-  ( g  e.  _V  ->  (iEdg `  g )  e.  _V )
2120elv 2777 . . . . . . 7  |-  (iEdg `  g )  e.  _V
2221a1i 9 . . . . . 6  |-  ( ( g  =  h  /\  v  =  (Vtx `  h
) )  ->  (iEdg `  g )  e.  _V )
23 fveq2 5586 . . . . . . 7  |-  ( g  =  h  ->  (iEdg `  g )  =  (iEdg `  h ) )
2423adantr 276 . . . . . 6  |-  ( ( g  =  h  /\  v  =  (Vtx `  h
) )  ->  (iEdg `  g )  =  (iEdg `  h ) )
25 simpr 110 . . . . . . 7  |-  ( ( ( g  =  h  /\  v  =  (Vtx
`  h ) )  /\  e  =  (iEdg `  h ) )  -> 
e  =  (iEdg `  h ) )
2625dmeqd 4886 . . . . . . 7  |-  ( ( ( g  =  h  /\  v  =  (Vtx
`  h ) )  /\  e  =  (iEdg `  h ) )  ->  dom  e  =  dom  (iEdg `  h ) )
27 pweq 3621 . . . . . . . . 9  |-  ( v  =  (Vtx `  h
)  ->  ~P v  =  ~P (Vtx `  h
) )
2827ad2antlr 489 . . . . . . . 8  |-  ( ( ( g  =  h  /\  v  =  (Vtx
`  h ) )  /\  e  =  (iEdg `  h ) )  ->  ~P v  =  ~P (Vtx `  h ) )
2928rabeqdv 2767 . . . . . . 7  |-  ( ( ( g  =  h  /\  v  =  (Vtx
`  h ) )  /\  e  =  (iEdg `  h ) )  ->  { x  e.  ~P v  |  x  ~~  2o }  =  { x  e.  ~P (Vtx `  h
)  |  x  ~~  2o } )
3025, 26, 29feq123d 5423 . . . . . 6  |-  ( ( ( g  =  h  /\  v  =  (Vtx
`  h ) )  /\  e  =  (iEdg `  h ) )  -> 
( e : dom  e
--> { x  e.  ~P v  |  x  ~~  2o }  <->  (iEdg `  h ) : dom  (iEdg `  h
) --> { x  e. 
~P (Vtx `  h
)  |  x  ~~  2o } ) )
3122, 24, 30sbcied2 3038 . . . . 5  |-  ( ( g  =  h  /\  v  =  (Vtx `  h
) )  ->  ( [. (iEdg `  g )  /  e ]. e : dom  e --> { x  e.  ~P v  |  x 
~~  2o }  <->  (iEdg `  h
) : dom  (iEdg `  h ) --> { x  e.  ~P (Vtx `  h
)  |  x  ~~  2o } ) )
3218, 19, 31sbcied2 3038 . . . 4  |-  ( g  =  h  ->  ( [. (Vtx `  g )  /  v ]. [. (iEdg `  g )  /  e ]. e : dom  e --> { x  e.  ~P v  |  x  ~~  2o }  <->  (iEdg `  h ) : dom  (iEdg `  h
) --> { x  e. 
~P (Vtx `  h
)  |  x  ~~  2o } ) )
3332cbvabv 2331 . . 3  |-  { g  |  [. (Vtx `  g )  /  v ]. [. (iEdg `  g
)  /  e ]. e : dom  e --> { x  e.  ~P v  |  x  ~~  2o } }  =  { h  |  (iEdg `  h ) : dom  (iEdg `  h
) --> { x  e. 
~P (Vtx `  h
)  |  x  ~~  2o } }
3415, 33elab2g 2922 . 2  |-  ( G  e.  U  ->  ( G  e.  { g  |  [. (Vtx `  g
)  /  v ]. [. (iEdg `  g )  /  e ]. e : dom  e --> { x  e.  ~P v  |  x 
~~  2o } }  <->  E : dom  E --> { x  e.  ~P V  |  x 
~~  2o } ) )
352, 34bitrid 192 1  |-  ( G  e.  U  ->  ( G  e. UMGraph  <->  E : dom  E --> { x  e.  ~P V  |  x  ~~  2o } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2177   {cab 2192   {crab 2489   _Vcvv 2773   [.wsbc 3000   ~Pcpw 3618   class class class wbr 4048   dom cdm 4680   -->wf 5273   ` cfv 5277   2oc2o 6506    ~~ cen 6835  Vtxcvtx 15661  iEdgciedg 15662  UMGraphcumgr 15738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-addcom 8038  ax-mulcom 8039  ax-addass 8040  ax-mulass 8041  ax-distr 8042  ax-i2m1 8043  ax-1rid 8045  ax-0id 8046  ax-rnegex 8047  ax-cnre 8049
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-if 3574  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-fo 5283  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-sub 8258  df-inn 9050  df-2 9108  df-3 9109  df-4 9110  df-5 9111  df-6 9112  df-7 9113  df-8 9114  df-9 9115  df-n0 9309  df-dec 9518  df-ndx 12885  df-slot 12886  df-base 12888  df-edgf 15654  df-vtx 15663  df-iedg 15664  df-umgren 15740
This theorem is referenced by:  wrdumgren  15752  umgrfen  15753  umgr0e  15761  umgrun  15769
  Copyright terms: Public domain W3C validator