| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > umgrunop | GIF version | ||
| Description: The union of two multigraphs (with the same vertex set): If 〈𝑉, 𝐸〉 and 〈𝑉, 𝐹〉 are multigraphs, then 〈𝑉, 𝐸 ∪ 𝐹〉 is a multigraph (the vertex set stays the same, but the edges from both graphs are kept). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 25-Nov-2020.) |
| Ref | Expression |
|---|---|
| umgrun.g | ⊢ (𝜑 → 𝐺 ∈ UMGraph) |
| umgrun.h | ⊢ (𝜑 → 𝐻 ∈ UMGraph) |
| umgrun.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| umgrun.f | ⊢ 𝐹 = (iEdg‘𝐻) |
| umgrun.vg | ⊢ 𝑉 = (Vtx‘𝐺) |
| umgrun.vh | ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) |
| umgrun.i | ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) |
| Ref | Expression |
|---|---|
| umgrunop | ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ UMGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | umgrun.g | . 2 ⊢ (𝜑 → 𝐺 ∈ UMGraph) | |
| 2 | umgrun.h | . 2 ⊢ (𝜑 → 𝐻 ∈ UMGraph) | |
| 3 | umgrun.e | . 2 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 4 | umgrun.f | . 2 ⊢ 𝐹 = (iEdg‘𝐻) | |
| 5 | umgrun.vg | . 2 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 6 | umgrun.vh | . 2 ⊢ (𝜑 → (Vtx‘𝐻) = 𝑉) | |
| 7 | umgrun.i | . 2 ⊢ (𝜑 → (dom 𝐸 ∩ dom 𝐹) = ∅) | |
| 8 | vtxex 15804 | . . . . 5 ⊢ (𝐺 ∈ UMGraph → (Vtx‘𝐺) ∈ V) | |
| 9 | 1, 8 | syl 14 | . . . 4 ⊢ (𝜑 → (Vtx‘𝐺) ∈ V) |
| 10 | 5, 9 | eqeltrid 2316 | . . 3 ⊢ (𝜑 → 𝑉 ∈ V) |
| 11 | iedgex 15805 | . . . . . 6 ⊢ (𝐺 ∈ UMGraph → (iEdg‘𝐺) ∈ V) | |
| 12 | 1, 11 | syl 14 | . . . . 5 ⊢ (𝜑 → (iEdg‘𝐺) ∈ V) |
| 13 | 3, 12 | eqeltrid 2316 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ V) |
| 14 | iedgex 15805 | . . . . . 6 ⊢ (𝐻 ∈ UMGraph → (iEdg‘𝐻) ∈ V) | |
| 15 | 2, 14 | syl 14 | . . . . 5 ⊢ (𝜑 → (iEdg‘𝐻) ∈ V) |
| 16 | 4, 15 | eqeltrid 2316 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ V) |
| 17 | unexg 4531 | . . . 4 ⊢ ((𝐸 ∈ V ∧ 𝐹 ∈ V) → (𝐸 ∪ 𝐹) ∈ V) | |
| 18 | 13, 16, 17 | syl2anc 411 | . . 3 ⊢ (𝜑 → (𝐸 ∪ 𝐹) ∈ V) |
| 19 | opexg 4313 | . . 3 ⊢ ((𝑉 ∈ V ∧ (𝐸 ∪ 𝐹) ∈ V) → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ V) | |
| 20 | 10, 18, 19 | syl2anc 411 | . 2 ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ V) |
| 21 | opvtxfv 15808 | . . 3 ⊢ ((𝑉 ∈ V ∧ (𝐸 ∪ 𝐹) ∈ V) → (Vtx‘〈𝑉, (𝐸 ∪ 𝐹)〉) = 𝑉) | |
| 22 | 10, 18, 21 | syl2anc 411 | . 2 ⊢ (𝜑 → (Vtx‘〈𝑉, (𝐸 ∪ 𝐹)〉) = 𝑉) |
| 23 | opiedgfv 15811 | . . 3 ⊢ ((𝑉 ∈ V ∧ (𝐸 ∪ 𝐹) ∈ V) → (iEdg‘〈𝑉, (𝐸 ∪ 𝐹)〉) = (𝐸 ∪ 𝐹)) | |
| 24 | 10, 18, 23 | syl2anc 411 | . 2 ⊢ (𝜑 → (iEdg‘〈𝑉, (𝐸 ∪ 𝐹)〉) = (𝐸 ∪ 𝐹)) |
| 25 | 1, 2, 3, 4, 5, 6, 7, 20, 22, 24 | umgrun 15911 | 1 ⊢ (𝜑 → 〈𝑉, (𝐸 ∪ 𝐹)〉 ∈ UMGraph) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ∪ cun 3195 ∩ cin 3196 ∅c0 3491 〈cop 3669 dom cdm 4716 ‘cfv 5314 Vtxcvtx 15798 iEdgciedg 15799 UMGraphcumgr 15877 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-cnre 8098 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-fo 5320 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-sub 8307 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-5 9160 df-6 9161 df-7 9162 df-8 9163 df-9 9164 df-n0 9358 df-dec 9567 df-ndx 13021 df-slot 13022 df-base 13024 df-edgf 15791 df-vtx 15800 df-iedg 15801 df-umgren 15879 |
| This theorem is referenced by: usgrunop 15977 |
| Copyright terms: Public domain | W3C validator |