![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > unitgrpbasd | GIF version |
Description: The base set of the group of units. (Contributed by Mario Carneiro, 25-Dec-2014.) |
Ref | Expression |
---|---|
unitgrpbasd.u | β’ (π β π = (Unitβπ )) |
unitgrpbasd.g | β’ (π β πΊ = ((mulGrpβπ ) βΎs π)) |
unitgrpbasd.r | β’ (π β π β SRing) |
Ref | Expression |
---|---|
unitgrpbasd | β’ (π β π = (BaseβπΊ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unitgrpbasd.g | . 2 β’ (π β πΊ = ((mulGrpβπ ) βΎs π)) | |
2 | unitgrpbasd.r | . . 3 β’ (π β π β SRing) | |
3 | eqid 2177 | . . . 4 β’ (mulGrpβπ ) = (mulGrpβπ ) | |
4 | eqid 2177 | . . . 4 β’ (Baseβπ ) = (Baseβπ ) | |
5 | 3, 4 | mgpbasg 13134 | . . 3 β’ (π β SRing β (Baseβπ ) = (Baseβ(mulGrpβπ ))) |
6 | 2, 5 | syl 14 | . 2 β’ (π β (Baseβπ ) = (Baseβ(mulGrpβπ ))) |
7 | 3 | mgpex 13133 | . . 3 β’ (π β SRing β (mulGrpβπ ) β V) |
8 | 2, 7 | syl 14 | . 2 β’ (π β (mulGrpβπ ) β V) |
9 | eqidd 2178 | . . 3 β’ (π β (Baseβπ ) = (Baseβπ )) | |
10 | unitgrpbasd.u | . . 3 β’ (π β π = (Unitβπ )) | |
11 | 9, 10, 2 | unitssd 13276 | . 2 β’ (π β π β (Baseβπ )) |
12 | 1, 6, 8, 11 | ressbas2d 12527 | 1 β’ (π β π = (BaseβπΊ)) |
Colors of variables: wff set class |
Syntax hints: β wi 4 = wceq 1353 β wcel 2148 Vcvv 2737 βcfv 5216 (class class class)co 5874 Basecbs 12461 βΎs cress 12462 mulGrpcmgp 13128 SRingcsrg 13144 Unitcui 13254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4121 ax-pow 4174 ax-pr 4209 ax-un 4433 ax-setind 4536 ax-cnex 7901 ax-resscn 7902 ax-1cn 7903 ax-1re 7904 ax-icn 7905 ax-addcl 7906 ax-addrcl 7907 ax-mulcl 7908 ax-addcom 7910 ax-addass 7912 ax-i2m1 7915 ax-0lt1 7916 ax-0id 7918 ax-rnegex 7919 ax-pre-ltirr 7922 ax-pre-ltadd 7926 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-br 4004 df-opab 4065 df-mpt 4066 df-id 4293 df-xp 4632 df-rel 4633 df-cnv 4634 df-co 4635 df-dm 4636 df-rn 4637 df-res 4638 df-ima 4639 df-iota 5178 df-fun 5218 df-fn 5219 df-fv 5224 df-riota 5830 df-ov 5877 df-oprab 5878 df-mpo 5879 df-pnf 7993 df-mnf 7994 df-ltxr 7996 df-inn 8919 df-2 8977 df-3 8978 df-ndx 12464 df-slot 12465 df-base 12467 df-sets 12468 df-iress 12469 df-plusg 12548 df-mulr 12549 df-0g 12706 df-mgm 12774 df-sgrp 12807 df-mnd 12817 df-mgp 13129 df-srg 13145 df-dvdsr 13256 df-unit 13257 |
This theorem is referenced by: unitgrp 13283 unitinvcl 13290 unitinvinv 13291 unitlinv 13293 unitrinv 13294 rdivmuldivd 13311 invrpropdg 13316 subrgugrp 13359 |
Copyright terms: Public domain | W3C validator |