![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > unitgrpbasd | GIF version |
Description: The base set of the group of units. (Contributed by Mario Carneiro, 25-Dec-2014.) |
Ref | Expression |
---|---|
unitgrpbasd.u | ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) |
unitgrpbasd.g | ⊢ (𝜑 → 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)) |
unitgrpbasd.r | ⊢ (𝜑 → 𝑅 ∈ SRing) |
Ref | Expression |
---|---|
unitgrpbasd | ⊢ (𝜑 → 𝑈 = (Base‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unitgrpbasd.g | . 2 ⊢ (𝜑 → 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)) | |
2 | unitgrpbasd.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ SRing) | |
3 | eqid 2193 | . . . 4 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
4 | eqid 2193 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
5 | 3, 4 | mgpbasg 13422 | . . 3 ⊢ (𝑅 ∈ SRing → (Base‘𝑅) = (Base‘(mulGrp‘𝑅))) |
6 | 2, 5 | syl 14 | . 2 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(mulGrp‘𝑅))) |
7 | 3 | mgpex 13421 | . . 3 ⊢ (𝑅 ∈ SRing → (mulGrp‘𝑅) ∈ V) |
8 | 2, 7 | syl 14 | . 2 ⊢ (𝜑 → (mulGrp‘𝑅) ∈ V) |
9 | eqidd 2194 | . . 3 ⊢ (𝜑 → (Base‘𝑅) = (Base‘𝑅)) | |
10 | unitgrpbasd.u | . . 3 ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) | |
11 | 9, 10, 2 | unitssd 13605 | . 2 ⊢ (𝜑 → 𝑈 ⊆ (Base‘𝑅)) |
12 | 1, 6, 8, 11 | ressbas2d 12686 | 1 ⊢ (𝜑 → 𝑈 = (Base‘𝐺)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 Vcvv 2760 ‘cfv 5254 (class class class)co 5918 Basecbs 12618 ↾s cress 12619 mulGrpcmgp 13416 SRingcsrg 13459 Unitcui 13583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-pre-ltirr 7984 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-ltxr 8059 df-inn 8983 df-2 9041 df-3 9042 df-ndx 12621 df-slot 12622 df-base 12624 df-sets 12625 df-iress 12626 df-plusg 12708 df-mulr 12709 df-0g 12869 df-mgm 12939 df-sgrp 12985 df-mnd 12998 df-mgp 13417 df-srg 13460 df-dvdsr 13585 df-unit 13586 |
This theorem is referenced by: unitgrp 13612 unitinvcl 13619 unitinvinv 13620 unitlinv 13622 unitrinv 13623 rdivmuldivd 13640 invrpropdg 13645 rhmunitinv 13674 subrgugrp 13736 |
Copyright terms: Public domain | W3C validator |