ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unitinvcl Unicode version

Theorem unitinvcl 13292
Description: The inverse of a unit exists and is a unit. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
unitinvcl.1  |-  U  =  (Unit `  R )
unitinvcl.2  |-  I  =  ( invr `  R
)
Assertion
Ref Expression
unitinvcl  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  (
I `  X )  e.  U )

Proof of Theorem unitinvcl
StepHypRef Expression
1 unitinvcl.1 . . . . . . 7  |-  U  =  (Unit `  R )
21a1i 9 . . . . . 6  |-  ( R  e.  Ring  ->  U  =  (Unit `  R )
)
3 eqid 2177 . . . . . . 7  |-  ( (mulGrp `  R )s  U )  =  ( (mulGrp `  R )s  U
)
43a1i 9 . . . . . 6  |-  ( R  e.  Ring  ->  ( (mulGrp `  R )s  U )  =  ( (mulGrp `  R )s  U
) )
5 ringsrg 13224 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. SRing
)
62, 4, 5unitgrpbasd 13284 . . . . 5  |-  ( R  e.  Ring  ->  U  =  ( Base `  (
(mulGrp `  R )s  U
) ) )
76eleq2d 2247 . . . 4  |-  ( R  e.  Ring  ->  ( X  e.  U  <->  X  e.  ( Base `  ( (mulGrp `  R )s  U ) ) ) )
87pm5.32i 454 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  U )  <->  ( R  e.  Ring  /\  X  e.  ( Base `  ( (mulGrp `  R )s  U ) ) ) )
91, 3unitgrp 13285 . . . 4  |-  ( R  e.  Ring  ->  ( (mulGrp `  R )s  U )  e.  Grp )
10 eqid 2177 . . . . 5  |-  ( Base `  ( (mulGrp `  R
)s 
U ) )  =  ( Base `  (
(mulGrp `  R )s  U
) )
11 eqid 2177 . . . . 5  |-  ( invg `  ( (mulGrp `  R )s  U ) )  =  ( invg `  ( (mulGrp `  R )s  U
) )
1210, 11grpinvcl 12921 . . . 4  |-  ( ( ( (mulGrp `  R
)s 
U )  e.  Grp  /\  X  e.  ( Base `  ( (mulGrp `  R
)s 
U ) ) )  ->  ( ( invg `  ( (mulGrp `  R )s  U ) ) `  X )  e.  (
Base `  ( (mulGrp `  R )s  U ) ) )
139, 12sylan 283 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  ( Base `  (
(mulGrp `  R )s  U
) ) )  -> 
( ( invg `  ( (mulGrp `  R
)s 
U ) ) `  X )  e.  (
Base `  ( (mulGrp `  R )s  U ) ) )
148, 13sylbi 121 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  (
( invg `  ( (mulGrp `  R )s  U
) ) `  X
)  e.  ( Base `  ( (mulGrp `  R
)s 
U ) ) )
15 unitinvcl.2 . . . . . . 7  |-  I  =  ( invr `  R
)
1615a1i 9 . . . . . 6  |-  ( R  e.  Ring  ->  I  =  ( invr `  R
) )
17 id 19 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. 
Ring )
182, 4, 16, 17invrfvald 13291 . . . . 5  |-  ( R  e.  Ring  ->  I  =  ( invg `  ( (mulGrp `  R )s  U
) ) )
1918fveq1d 5518 . . . 4  |-  ( R  e.  Ring  ->  ( I `
 X )  =  ( ( invg `  ( (mulGrp `  R
)s 
U ) ) `  X ) )
2019, 6eleq12d 2248 . . 3  |-  ( R  e.  Ring  ->  ( ( I `  X )  e.  U  <->  ( ( invg `  ( (mulGrp `  R )s  U ) ) `  X )  e.  (
Base `  ( (mulGrp `  R )s  U ) ) ) )
2120adantr 276 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  (
( I `  X
)  e.  U  <->  ( ( invg `  ( (mulGrp `  R )s  U ) ) `  X )  e.  (
Base `  ( (mulGrp `  R )s  U ) ) ) )
2214, 21mpbird 167 1  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  (
I `  X )  e.  U )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   ` cfv 5217  (class class class)co 5875   Basecbs 12462   ↾s cress 12463   Grpcgrp 12877   invgcminusg 12878  mulGrpcmgp 13130   Ringcrg 13179  Unitcui 13256   invrcinvr 13289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4119  ax-sep 4122  ax-nul 4130  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537  ax-cnex 7902  ax-resscn 7903  ax-1cn 7904  ax-1re 7905  ax-icn 7906  ax-addcl 7907  ax-addrcl 7908  ax-mulcl 7909  ax-addcom 7911  ax-addass 7913  ax-i2m1 7916  ax-0lt1 7917  ax-0id 7919  ax-rnegex 7920  ax-pre-ltirr 7923  ax-pre-lttrn 7925  ax-pre-ltadd 7927
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2740  df-sbc 2964  df-csb 3059  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-int 3846  df-iun 3889  df-br 4005  df-opab 4066  df-mpt 4067  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-rn 4638  df-res 4639  df-ima 4640  df-iota 5179  df-fun 5219  df-fn 5220  df-f 5221  df-f1 5222  df-fo 5223  df-f1o 5224  df-fv 5225  df-riota 5831  df-ov 5878  df-oprab 5879  df-mpo 5880  df-tpos 6246  df-pnf 7994  df-mnf 7995  df-ltxr 7997  df-inn 8920  df-2 8978  df-3 8979  df-ndx 12465  df-slot 12466  df-base 12468  df-sets 12469  df-iress 12470  df-plusg 12549  df-mulr 12550  df-0g 12707  df-mgm 12775  df-sgrp 12808  df-mnd 12818  df-grp 12880  df-minusg 12881  df-cmn 13090  df-abl 13091  df-mgp 13131  df-ur 13143  df-srg 13147  df-ring 13181  df-oppr 13240  df-dvdsr 13258  df-unit 13259  df-invr 13290
This theorem is referenced by:  ringinvcl  13294  dvrvald  13303  unitdvcl  13305  dvrdir  13312  rdivmuldivd  13313  subrguss  13357  subrgugrp  13361
  Copyright terms: Public domain W3C validator