ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  usgruspgrben Unicode version

Theorem usgruspgrben 15941
Description: A class is a simple graph iff it is a simple pseudograph without loops. (Contributed by AV, 18-Oct-2020.)
Assertion
Ref Expression
usgruspgrben  |-  ( G  e. USGraph 
<->  ( G  e. USPGraph  /\  A. e  e.  (Edg `  G
) e  ~~  2o ) )
Distinct variable group:    e, G

Proof of Theorem usgruspgrben
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 usgruspgr 15938 . . 3  |-  ( G  e. USGraph  ->  G  e. USPGraph )
2 edgusgren 15918 . . . . 5  |-  ( ( G  e. USGraph  /\  e  e.  (Edg `  G )
)  ->  ( e  e.  ~P (Vtx `  G
)  /\  e  ~~  2o ) )
32simprd 114 . . . 4  |-  ( ( G  e. USGraph  /\  e  e.  (Edg `  G )
)  ->  e  ~~  2o )
43ralrimiva 2581 . . 3  |-  ( G  e. USGraph  ->  A. e  e.  (Edg
`  G ) e 
~~  2o )
51, 4jca 306 . 2  |-  ( G  e. USGraph  ->  ( G  e. USPGraph  /\ 
A. e  e.  (Edg
`  G ) e 
~~  2o ) )
6 edgvalg 15817 . . . . . 6  |-  ( G  e. USPGraph  ->  (Edg `  G
)  =  ran  (iEdg `  G ) )
76raleqdv 2712 . . . . 5  |-  ( G  e. USPGraph  ->  ( A. e  e.  (Edg `  G )
e  ~~  2o  <->  A. e  e.  ran  (iEdg `  G
) e  ~~  2o ) )
8 eqid 2207 . . . . . . 7  |-  (Vtx `  G )  =  (Vtx
`  G )
9 eqid 2207 . . . . . . 7  |-  (iEdg `  G )  =  (iEdg `  G )
108, 9uspgrfen 15914 . . . . . 6  |-  ( G  e. USPGraph  ->  (iEdg `  G
) : dom  (iEdg `  G ) -1-1-> { x  e.  ~P (Vtx `  G
)  |  ( x 
~~  1o  \/  x  ~~  2o ) } )
11 f1rn 5505 . . . . . . . . 9  |-  ( (iEdg `  G ) : dom  (iEdg `  G ) -1-1-> {
x  e.  ~P (Vtx `  G )  |  ( x  ~~  1o  \/  x  ~~  2o ) }  ->  ran  (iEdg `  G
)  C_  { x  e.  ~P (Vtx `  G
)  |  ( x 
~~  1o  \/  x  ~~  2o ) } )
12 ssel2 3197 . . . . . . . . . . . . . . 15  |-  ( ( ran  (iEdg `  G
)  C_  { x  e.  ~P (Vtx `  G
)  |  ( x 
~~  1o  \/  x  ~~  2o ) }  /\  y  e.  ran  (iEdg `  G ) )  -> 
y  e.  { x  e.  ~P (Vtx `  G
)  |  ( x 
~~  1o  \/  x  ~~  2o ) } )
1312expcom 116 . . . . . . . . . . . . . 14  |-  ( y  e.  ran  (iEdg `  G )  ->  ( ran  (iEdg `  G )  C_ 
{ x  e.  ~P (Vtx `  G )  |  ( x  ~~  1o  \/  x  ~~  2o ) }  ->  y  e.  { x  e.  ~P (Vtx `  G )  |  ( x  ~~  1o  \/  x  ~~  2o ) } ) )
14 breq1 4063 . . . . . . . . . . . . . . . 16  |-  ( e  =  y  ->  (
e  ~~  2o  <->  y  ~~  2o ) )
1514rspcv 2881 . . . . . . . . . . . . . . 15  |-  ( y  e.  ran  (iEdg `  G )  ->  ( A. e  e.  ran  (iEdg `  G ) e 
~~  2o  ->  y  ~~  2o ) )
16 breq1 4063 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  y  ->  (
x  ~~  1o  <->  y  ~~  1o ) )
17 breq1 4063 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  y  ->  (
x  ~~  2o  <->  y  ~~  2o ) )
1816, 17orbi12d 795 . . . . . . . . . . . . . . . . 17  |-  ( x  =  y  ->  (
( x  ~~  1o  \/  x  ~~  2o )  <-> 
( y  ~~  1o  \/  y  ~~  2o ) ) )
1918elrab 2937 . . . . . . . . . . . . . . . 16  |-  ( y  e.  { x  e. 
~P (Vtx `  G
)  |  ( x 
~~  1o  \/  x  ~~  2o ) }  <->  ( y  e.  ~P (Vtx `  G
)  /\  ( y  ~~  1o  \/  y  ~~  2o ) ) )
2017elrab 2937 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  { x  e. 
~P (Vtx `  G
)  |  x  ~~  2o }  <->  ( y  e. 
~P (Vtx `  G
)  /\  y  ~~  2o ) )
2120simplbi2 385 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ~P (Vtx `  G )  ->  (
y  ~~  2o  ->  y  e.  { x  e. 
~P (Vtx `  G
)  |  x  ~~  2o } ) )
2221adantr 276 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  ~P (Vtx `  G )  /\  (
y  ~~  1o  \/  y  ~~  2o ) )  ->  ( y  ~~  2o  ->  y  e.  {
x  e.  ~P (Vtx `  G )  |  x 
~~  2o } ) )
2319, 22sylbi 121 . . . . . . . . . . . . . . 15  |-  ( y  e.  { x  e. 
~P (Vtx `  G
)  |  ( x 
~~  1o  \/  x  ~~  2o ) }  ->  ( y  ~~  2o  ->  y  e.  { x  e. 
~P (Vtx `  G
)  |  x  ~~  2o } ) )
2415, 23syl9 72 . . . . . . . . . . . . . 14  |-  ( y  e.  ran  (iEdg `  G )  ->  (
y  e.  { x  e.  ~P (Vtx `  G
)  |  ( x 
~~  1o  \/  x  ~~  2o ) }  ->  ( A. e  e.  ran  (iEdg `  G ) e 
~~  2o  ->  y  e. 
{ x  e.  ~P (Vtx `  G )  |  x  ~~  2o }
) ) )
2513, 24syld 45 . . . . . . . . . . . . 13  |-  ( y  e.  ran  (iEdg `  G )  ->  ( ran  (iEdg `  G )  C_ 
{ x  e.  ~P (Vtx `  G )  |  ( x  ~~  1o  \/  x  ~~  2o ) }  ->  ( A. e  e.  ran  (iEdg `  G ) e  ~~  2o  ->  y  e.  {
x  e.  ~P (Vtx `  G )  |  x 
~~  2o } ) ) )
2625com13 80 . . . . . . . . . . . 12  |-  ( A. e  e.  ran  (iEdg `  G ) e  ~~  2o  ->  ( ran  (iEdg `  G )  C_  { x  e.  ~P (Vtx `  G
)  |  ( x 
~~  1o  \/  x  ~~  2o ) }  ->  ( y  e.  ran  (iEdg `  G )  ->  y  e.  { x  e.  ~P (Vtx `  G )  |  x  ~~  2o }
) ) )
2726imp 124 . . . . . . . . . . 11  |-  ( ( A. e  e.  ran  (iEdg `  G ) e 
~~  2o  /\  ran  (iEdg `  G )  C_  { x  e.  ~P (Vtx `  G
)  |  ( x 
~~  1o  \/  x  ~~  2o ) } )  ->  ( y  e. 
ran  (iEdg `  G )  ->  y  e.  { x  e.  ~P (Vtx `  G
)  |  x  ~~  2o } ) )
2827ssrdv 3208 . . . . . . . . . 10  |-  ( ( A. e  e.  ran  (iEdg `  G ) e 
~~  2o  /\  ran  (iEdg `  G )  C_  { x  e.  ~P (Vtx `  G
)  |  ( x 
~~  1o  \/  x  ~~  2o ) } )  ->  ran  (iEdg `  G
)  C_  { x  e.  ~P (Vtx `  G
)  |  x  ~~  2o } )
2928ex 115 . . . . . . . . 9  |-  ( A. e  e.  ran  (iEdg `  G ) e  ~~  2o  ->  ( ran  (iEdg `  G )  C_  { x  e.  ~P (Vtx `  G
)  |  ( x 
~~  1o  \/  x  ~~  2o ) }  ->  ran  (iEdg `  G )  C_ 
{ x  e.  ~P (Vtx `  G )  |  x  ~~  2o }
) )
3011, 29mpan9 281 . . . . . . . 8  |-  ( ( (iEdg `  G ) : dom  (iEdg `  G
) -1-1-> { x  e.  ~P (Vtx `  G )  |  ( x  ~~  1o  \/  x  ~~  2o ) }  /\  A. e  e.  ran  (iEdg `  G
) e  ~~  2o )  ->  ran  (iEdg `  G
)  C_  { x  e.  ~P (Vtx `  G
)  |  x  ~~  2o } )
31 f1ssr 5511 . . . . . . . 8  |-  ( ( (iEdg `  G ) : dom  (iEdg `  G
) -1-1-> { x  e.  ~P (Vtx `  G )  |  ( x  ~~  1o  \/  x  ~~  2o ) }  /\  ran  (iEdg `  G )  C_  { x  e.  ~P (Vtx `  G
)  |  x  ~~  2o } )  ->  (iEdg `  G ) : dom  (iEdg `  G ) -1-1-> {
x  e.  ~P (Vtx `  G )  |  x 
~~  2o } )
3230, 31syldan 282 . . . . . . 7  |-  ( ( (iEdg `  G ) : dom  (iEdg `  G
) -1-1-> { x  e.  ~P (Vtx `  G )  |  ( x  ~~  1o  \/  x  ~~  2o ) }  /\  A. e  e.  ran  (iEdg `  G
) e  ~~  2o )  ->  (iEdg `  G
) : dom  (iEdg `  G ) -1-1-> { x  e.  ~P (Vtx `  G
)  |  x  ~~  2o } )
3332ex 115 . . . . . 6  |-  ( (iEdg `  G ) : dom  (iEdg `  G ) -1-1-> {
x  e.  ~P (Vtx `  G )  |  ( x  ~~  1o  \/  x  ~~  2o ) }  ->  ( A. e  e.  ran  (iEdg `  G
) e  ~~  2o  ->  (iEdg `  G ) : dom  (iEdg `  G
) -1-1-> { x  e.  ~P (Vtx `  G )  |  x  ~~  2o }
) )
3410, 33syl 14 . . . . 5  |-  ( G  e. USPGraph  ->  ( A. e  e.  ran  (iEdg `  G
) e  ~~  2o  ->  (iEdg `  G ) : dom  (iEdg `  G
) -1-1-> { x  e.  ~P (Vtx `  G )  |  x  ~~  2o }
) )
357, 34sylbid 150 . . . 4  |-  ( G  e. USPGraph  ->  ( A. e  e.  (Edg `  G )
e  ~~  2o  ->  (iEdg `  G ) : dom  (iEdg `  G ) -1-1-> {
x  e.  ~P (Vtx `  G )  |  x 
~~  2o } ) )
3635imp 124 . . 3  |-  ( ( G  e. USPGraph  /\  A. e  e.  (Edg `  G )
e  ~~  2o )  ->  (iEdg `  G ) : dom  (iEdg `  G
) -1-1-> { x  e.  ~P (Vtx `  G )  |  x  ~~  2o }
)
378, 9isusgren 15913 . . . 4  |-  ( G  e. USPGraph  ->  ( G  e. USGraph  <->  (iEdg `  G ) : dom  (iEdg `  G ) -1-1-> {
x  e.  ~P (Vtx `  G )  |  x 
~~  2o } ) )
3837adantr 276 . . 3  |-  ( ( G  e. USPGraph  /\  A. e  e.  (Edg `  G )
e  ~~  2o )  ->  ( G  e. USGraph  <->  (iEdg `  G
) : dom  (iEdg `  G ) -1-1-> { x  e.  ~P (Vtx `  G
)  |  x  ~~  2o } ) )
3936, 38mpbird 167 . 2  |-  ( ( G  e. USPGraph  /\  A. e  e.  (Edg `  G )
e  ~~  2o )  ->  G  e. USGraph )
405, 39impbii 126 1  |-  ( G  e. USGraph 
<->  ( G  e. USPGraph  /\  A. e  e.  (Edg `  G
) e  ~~  2o ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    e. wcel 2178   A.wral 2486   {crab 2490    C_ wss 3175   ~Pcpw 3627   class class class wbr 4060   dom cdm 4694   ran crn 4695   -1-1->wf1 5288   ` cfv 5291   1oc1o 6520   2oc2o 6521    ~~ cen 6850  Vtxcvtx 15772  iEdgciedg 15773  Edgcedg 15815  USPGraphcuspgr 15908  USGraphcusgr 15909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4179  ax-pow 4235  ax-pr 4270  ax-un 4499  ax-setind 4604  ax-cnex 8053  ax-resscn 8054  ax-1cn 8055  ax-1re 8056  ax-icn 8057  ax-addcl 8058  ax-addrcl 8059  ax-mulcl 8060  ax-addcom 8062  ax-mulcom 8063  ax-addass 8064  ax-mulass 8065  ax-distr 8066  ax-i2m1 8067  ax-1rid 8069  ax-0id 8070  ax-rnegex 8071  ax-cnre 8073
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2779  df-sbc 3007  df-csb 3103  df-dif 3177  df-un 3179  df-in 3181  df-ss 3188  df-if 3581  df-pw 3629  df-sn 3650  df-pr 3651  df-op 3653  df-uni 3866  df-int 3901  df-br 4061  df-opab 4123  df-mpt 4124  df-id 4359  df-xp 4700  df-rel 4701  df-cnv 4702  df-co 4703  df-dm 4704  df-rn 4705  df-res 4706  df-iota 5252  df-fun 5293  df-fn 5294  df-f 5295  df-f1 5296  df-fo 5297  df-fv 5299  df-riota 5924  df-ov 5972  df-oprab 5973  df-mpo 5974  df-1st 6251  df-2nd 6252  df-sub 8282  df-inn 9074  df-2 9132  df-3 9133  df-4 9134  df-5 9135  df-6 9136  df-7 9137  df-8 9138  df-9 9139  df-n0 9333  df-dec 9542  df-ndx 12996  df-slot 12997  df-base 12999  df-edgf 15765  df-vtx 15774  df-iedg 15775  df-edg 15816  df-uspgren 15910  df-usgren 15911
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator