ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  usgruspgrben Unicode version

Theorem usgruspgrben 15984
Description: A class is a simple graph iff it is a simple pseudograph without loops. (Contributed by AV, 18-Oct-2020.)
Assertion
Ref Expression
usgruspgrben  |-  ( G  e. USGraph 
<->  ( G  e. USPGraph  /\  A. e  e.  (Edg `  G
) e  ~~  2o ) )
Distinct variable group:    e, G

Proof of Theorem usgruspgrben
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 usgruspgr 15981 . . 3  |-  ( G  e. USGraph  ->  G  e. USPGraph )
2 edgusgren 15961 . . . . 5  |-  ( ( G  e. USGraph  /\  e  e.  (Edg `  G )
)  ->  ( e  e.  ~P (Vtx `  G
)  /\  e  ~~  2o ) )
32simprd 114 . . . 4  |-  ( ( G  e. USGraph  /\  e  e.  (Edg `  G )
)  ->  e  ~~  2o )
43ralrimiva 2603 . . 3  |-  ( G  e. USGraph  ->  A. e  e.  (Edg
`  G ) e 
~~  2o )
51, 4jca 306 . 2  |-  ( G  e. USGraph  ->  ( G  e. USPGraph  /\ 
A. e  e.  (Edg
`  G ) e 
~~  2o ) )
6 edgvalg 15860 . . . . . 6  |-  ( G  e. USPGraph  ->  (Edg `  G
)  =  ran  (iEdg `  G ) )
76raleqdv 2734 . . . . 5  |-  ( G  e. USPGraph  ->  ( A. e  e.  (Edg `  G )
e  ~~  2o  <->  A. e  e.  ran  (iEdg `  G
) e  ~~  2o ) )
8 eqid 2229 . . . . . . 7  |-  (Vtx `  G )  =  (Vtx
`  G )
9 eqid 2229 . . . . . . 7  |-  (iEdg `  G )  =  (iEdg `  G )
108, 9uspgrfen 15957 . . . . . 6  |-  ( G  e. USPGraph  ->  (iEdg `  G
) : dom  (iEdg `  G ) -1-1-> { x  e.  ~P (Vtx `  G
)  |  ( x 
~~  1o  \/  x  ~~  2o ) } )
11 f1rn 5532 . . . . . . . . 9  |-  ( (iEdg `  G ) : dom  (iEdg `  G ) -1-1-> {
x  e.  ~P (Vtx `  G )  |  ( x  ~~  1o  \/  x  ~~  2o ) }  ->  ran  (iEdg `  G
)  C_  { x  e.  ~P (Vtx `  G
)  |  ( x 
~~  1o  \/  x  ~~  2o ) } )
12 ssel2 3219 . . . . . . . . . . . . . . 15  |-  ( ( ran  (iEdg `  G
)  C_  { x  e.  ~P (Vtx `  G
)  |  ( x 
~~  1o  \/  x  ~~  2o ) }  /\  y  e.  ran  (iEdg `  G ) )  -> 
y  e.  { x  e.  ~P (Vtx `  G
)  |  ( x 
~~  1o  \/  x  ~~  2o ) } )
1312expcom 116 . . . . . . . . . . . . . 14  |-  ( y  e.  ran  (iEdg `  G )  ->  ( ran  (iEdg `  G )  C_ 
{ x  e.  ~P (Vtx `  G )  |  ( x  ~~  1o  \/  x  ~~  2o ) }  ->  y  e.  { x  e.  ~P (Vtx `  G )  |  ( x  ~~  1o  \/  x  ~~  2o ) } ) )
14 breq1 4086 . . . . . . . . . . . . . . . 16  |-  ( e  =  y  ->  (
e  ~~  2o  <->  y  ~~  2o ) )
1514rspcv 2903 . . . . . . . . . . . . . . 15  |-  ( y  e.  ran  (iEdg `  G )  ->  ( A. e  e.  ran  (iEdg `  G ) e 
~~  2o  ->  y  ~~  2o ) )
16 breq1 4086 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  y  ->  (
x  ~~  1o  <->  y  ~~  1o ) )
17 breq1 4086 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  y  ->  (
x  ~~  2o  <->  y  ~~  2o ) )
1816, 17orbi12d 798 . . . . . . . . . . . . . . . . 17  |-  ( x  =  y  ->  (
( x  ~~  1o  \/  x  ~~  2o )  <-> 
( y  ~~  1o  \/  y  ~~  2o ) ) )
1918elrab 2959 . . . . . . . . . . . . . . . 16  |-  ( y  e.  { x  e. 
~P (Vtx `  G
)  |  ( x 
~~  1o  \/  x  ~~  2o ) }  <->  ( y  e.  ~P (Vtx `  G
)  /\  ( y  ~~  1o  \/  y  ~~  2o ) ) )
2017elrab 2959 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  { x  e. 
~P (Vtx `  G
)  |  x  ~~  2o }  <->  ( y  e. 
~P (Vtx `  G
)  /\  y  ~~  2o ) )
2120simplbi2 385 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ~P (Vtx `  G )  ->  (
y  ~~  2o  ->  y  e.  { x  e. 
~P (Vtx `  G
)  |  x  ~~  2o } ) )
2221adantr 276 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  ~P (Vtx `  G )  /\  (
y  ~~  1o  \/  y  ~~  2o ) )  ->  ( y  ~~  2o  ->  y  e.  {
x  e.  ~P (Vtx `  G )  |  x 
~~  2o } ) )
2319, 22sylbi 121 . . . . . . . . . . . . . . 15  |-  ( y  e.  { x  e. 
~P (Vtx `  G
)  |  ( x 
~~  1o  \/  x  ~~  2o ) }  ->  ( y  ~~  2o  ->  y  e.  { x  e. 
~P (Vtx `  G
)  |  x  ~~  2o } ) )
2415, 23syl9 72 . . . . . . . . . . . . . 14  |-  ( y  e.  ran  (iEdg `  G )  ->  (
y  e.  { x  e.  ~P (Vtx `  G
)  |  ( x 
~~  1o  \/  x  ~~  2o ) }  ->  ( A. e  e.  ran  (iEdg `  G ) e 
~~  2o  ->  y  e. 
{ x  e.  ~P (Vtx `  G )  |  x  ~~  2o }
) ) )
2513, 24syld 45 . . . . . . . . . . . . 13  |-  ( y  e.  ran  (iEdg `  G )  ->  ( ran  (iEdg `  G )  C_ 
{ x  e.  ~P (Vtx `  G )  |  ( x  ~~  1o  \/  x  ~~  2o ) }  ->  ( A. e  e.  ran  (iEdg `  G ) e  ~~  2o  ->  y  e.  {
x  e.  ~P (Vtx `  G )  |  x 
~~  2o } ) ) )
2625com13 80 . . . . . . . . . . . 12  |-  ( A. e  e.  ran  (iEdg `  G ) e  ~~  2o  ->  ( ran  (iEdg `  G )  C_  { x  e.  ~P (Vtx `  G
)  |  ( x 
~~  1o  \/  x  ~~  2o ) }  ->  ( y  e.  ran  (iEdg `  G )  ->  y  e.  { x  e.  ~P (Vtx `  G )  |  x  ~~  2o }
) ) )
2726imp 124 . . . . . . . . . . 11  |-  ( ( A. e  e.  ran  (iEdg `  G ) e 
~~  2o  /\  ran  (iEdg `  G )  C_  { x  e.  ~P (Vtx `  G
)  |  ( x 
~~  1o  \/  x  ~~  2o ) } )  ->  ( y  e. 
ran  (iEdg `  G )  ->  y  e.  { x  e.  ~P (Vtx `  G
)  |  x  ~~  2o } ) )
2827ssrdv 3230 . . . . . . . . . 10  |-  ( ( A. e  e.  ran  (iEdg `  G ) e 
~~  2o  /\  ran  (iEdg `  G )  C_  { x  e.  ~P (Vtx `  G
)  |  ( x 
~~  1o  \/  x  ~~  2o ) } )  ->  ran  (iEdg `  G
)  C_  { x  e.  ~P (Vtx `  G
)  |  x  ~~  2o } )
2928ex 115 . . . . . . . . 9  |-  ( A. e  e.  ran  (iEdg `  G ) e  ~~  2o  ->  ( ran  (iEdg `  G )  C_  { x  e.  ~P (Vtx `  G
)  |  ( x 
~~  1o  \/  x  ~~  2o ) }  ->  ran  (iEdg `  G )  C_ 
{ x  e.  ~P (Vtx `  G )  |  x  ~~  2o }
) )
3011, 29mpan9 281 . . . . . . . 8  |-  ( ( (iEdg `  G ) : dom  (iEdg `  G
) -1-1-> { x  e.  ~P (Vtx `  G )  |  ( x  ~~  1o  \/  x  ~~  2o ) }  /\  A. e  e.  ran  (iEdg `  G
) e  ~~  2o )  ->  ran  (iEdg `  G
)  C_  { x  e.  ~P (Vtx `  G
)  |  x  ~~  2o } )
31 f1ssr 5538 . . . . . . . 8  |-  ( ( (iEdg `  G ) : dom  (iEdg `  G
) -1-1-> { x  e.  ~P (Vtx `  G )  |  ( x  ~~  1o  \/  x  ~~  2o ) }  /\  ran  (iEdg `  G )  C_  { x  e.  ~P (Vtx `  G
)  |  x  ~~  2o } )  ->  (iEdg `  G ) : dom  (iEdg `  G ) -1-1-> {
x  e.  ~P (Vtx `  G )  |  x 
~~  2o } )
3230, 31syldan 282 . . . . . . 7  |-  ( ( (iEdg `  G ) : dom  (iEdg `  G
) -1-1-> { x  e.  ~P (Vtx `  G )  |  ( x  ~~  1o  \/  x  ~~  2o ) }  /\  A. e  e.  ran  (iEdg `  G
) e  ~~  2o )  ->  (iEdg `  G
) : dom  (iEdg `  G ) -1-1-> { x  e.  ~P (Vtx `  G
)  |  x  ~~  2o } )
3332ex 115 . . . . . 6  |-  ( (iEdg `  G ) : dom  (iEdg `  G ) -1-1-> {
x  e.  ~P (Vtx `  G )  |  ( x  ~~  1o  \/  x  ~~  2o ) }  ->  ( A. e  e.  ran  (iEdg `  G
) e  ~~  2o  ->  (iEdg `  G ) : dom  (iEdg `  G
) -1-1-> { x  e.  ~P (Vtx `  G )  |  x  ~~  2o }
) )
3410, 33syl 14 . . . . 5  |-  ( G  e. USPGraph  ->  ( A. e  e.  ran  (iEdg `  G
) e  ~~  2o  ->  (iEdg `  G ) : dom  (iEdg `  G
) -1-1-> { x  e.  ~P (Vtx `  G )  |  x  ~~  2o }
) )
357, 34sylbid 150 . . . 4  |-  ( G  e. USPGraph  ->  ( A. e  e.  (Edg `  G )
e  ~~  2o  ->  (iEdg `  G ) : dom  (iEdg `  G ) -1-1-> {
x  e.  ~P (Vtx `  G )  |  x 
~~  2o } ) )
3635imp 124 . . 3  |-  ( ( G  e. USPGraph  /\  A. e  e.  (Edg `  G )
e  ~~  2o )  ->  (iEdg `  G ) : dom  (iEdg `  G
) -1-1-> { x  e.  ~P (Vtx `  G )  |  x  ~~  2o }
)
378, 9isusgren 15956 . . . 4  |-  ( G  e. USPGraph  ->  ( G  e. USGraph  <->  (iEdg `  G ) : dom  (iEdg `  G ) -1-1-> {
x  e.  ~P (Vtx `  G )  |  x 
~~  2o } ) )
3837adantr 276 . . 3  |-  ( ( G  e. USPGraph  /\  A. e  e.  (Edg `  G )
e  ~~  2o )  ->  ( G  e. USGraph  <->  (iEdg `  G
) : dom  (iEdg `  G ) -1-1-> { x  e.  ~P (Vtx `  G
)  |  x  ~~  2o } ) )
3936, 38mpbird 167 . 2  |-  ( ( G  e. USPGraph  /\  A. e  e.  (Edg `  G )
e  ~~  2o )  ->  G  e. USGraph )
405, 39impbii 126 1  |-  ( G  e. USGraph 
<->  ( G  e. USPGraph  /\  A. e  e.  (Edg `  G
) e  ~~  2o ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    e. wcel 2200   A.wral 2508   {crab 2512    C_ wss 3197   ~Pcpw 3649   class class class wbr 4083   dom cdm 4719   ran crn 4720   -1-1->wf1 5315   ` cfv 5318   1oc1o 6555   2oc2o 6556    ~~ cen 6885  Vtxcvtx 15813  iEdgciedg 15814  Edgcedg 15858  USPGraphcuspgr 15951  USGraphcusgr 15952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-sub 8319  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-5 9172  df-6 9173  df-7 9174  df-8 9175  df-9 9176  df-n0 9370  df-dec 9579  df-ndx 13035  df-slot 13036  df-base 13038  df-edgf 15806  df-vtx 15815  df-iedg 15816  df-edg 15859  df-uspgren 15953  df-usgren 15954
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator