| Step | Hyp | Ref
| Expression |
| 1 | | usgruspgr 15938 |
. . 3
⊢ (𝐺 ∈ USGraph → 𝐺 ∈
USPGraph) |
| 2 | | edgusgren 15918 |
. . . . 5
⊢ ((𝐺 ∈ USGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → (𝑒 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝑒 ≈ 2o)) |
| 3 | 2 | simprd 114 |
. . . 4
⊢ ((𝐺 ∈ USGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒 ≈ 2o) |
| 4 | 3 | ralrimiva 2581 |
. . 3
⊢ (𝐺 ∈ USGraph →
∀𝑒 ∈
(Edg‘𝐺)𝑒 ≈
2o) |
| 5 | 1, 4 | jca 306 |
. 2
⊢ (𝐺 ∈ USGraph → (𝐺 ∈ USPGraph ∧
∀𝑒 ∈
(Edg‘𝐺)𝑒 ≈
2o)) |
| 6 | | edgvalg 15817 |
. . . . . 6
⊢ (𝐺 ∈ USPGraph →
(Edg‘𝐺) = ran
(iEdg‘𝐺)) |
| 7 | 6 | raleqdv 2712 |
. . . . 5
⊢ (𝐺 ∈ USPGraph →
(∀𝑒 ∈
(Edg‘𝐺)𝑒 ≈ 2o ↔
∀𝑒 ∈ ran
(iEdg‘𝐺)𝑒 ≈
2o)) |
| 8 | | eqid 2207 |
. . . . . . 7
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
| 9 | | eqid 2207 |
. . . . . . 7
⊢
(iEdg‘𝐺) =
(iEdg‘𝐺) |
| 10 | 8, 9 | uspgrfen 15914 |
. . . . . 6
⊢ (𝐺 ∈ USPGraph →
(iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈
2o)}) |
| 11 | | f1rn 5505 |
. . . . . . . . 9
⊢
((iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} →
ran (iEdg‘𝐺) ⊆
{𝑥 ∈ 𝒫
(Vtx‘𝐺) ∣
(𝑥 ≈ 1o
∨ 𝑥 ≈
2o)}) |
| 12 | | ssel2 3197 |
. . . . . . . . . . . . . . 15
⊢ ((ran
(iEdg‘𝐺) ⊆
{𝑥 ∈ 𝒫
(Vtx‘𝐺) ∣
(𝑥 ≈ 1o
∨ 𝑥 ≈
2o)} ∧ 𝑦
∈ ran (iEdg‘𝐺))
→ 𝑦 ∈ {𝑥 ∈ 𝒫
(Vtx‘𝐺) ∣
(𝑥 ≈ 1o
∨ 𝑥 ≈
2o)}) |
| 13 | 12 | expcom 116 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ran (iEdg‘𝐺) → (ran (iEdg‘𝐺) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} →
𝑦 ∈ {𝑥 ∈ 𝒫
(Vtx‘𝐺) ∣
(𝑥 ≈ 1o
∨ 𝑥 ≈
2o)})) |
| 14 | | breq1 4063 |
. . . . . . . . . . . . . . . 16
⊢ (𝑒 = 𝑦 → (𝑒 ≈ 2o ↔ 𝑦 ≈
2o)) |
| 15 | 14 | rspcv 2881 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ ran (iEdg‘𝐺) → (∀𝑒 ∈ ran (iEdg‘𝐺)𝑒 ≈ 2o → 𝑦 ≈
2o)) |
| 16 | | breq1 4063 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑦 → (𝑥 ≈ 1o ↔ 𝑦 ≈
1o)) |
| 17 | | breq1 4063 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑦 → (𝑥 ≈ 2o ↔ 𝑦 ≈
2o)) |
| 18 | 16, 17 | orbi12d 795 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → ((𝑥 ≈ 1o ∨ 𝑥 ≈ 2o) ↔
(𝑦 ≈ 1o
∨ 𝑦 ≈
2o))) |
| 19 | 18 | elrab 2937 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} ↔
(𝑦 ∈ 𝒫
(Vtx‘𝐺) ∧ (𝑦 ≈ 1o ∨
𝑦 ≈
2o))) |
| 20 | 17 | elrab 2937 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 𝑥 ≈ 2o} ↔ (𝑦 ∈ 𝒫
(Vtx‘𝐺) ∧ 𝑦 ≈
2o)) |
| 21 | 20 | simplbi2 385 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ 𝒫
(Vtx‘𝐺) → (𝑦 ≈ 2o →
𝑦 ∈ {𝑥 ∈ 𝒫
(Vtx‘𝐺) ∣ 𝑥 ≈
2o})) |
| 22 | 21 | adantr 276 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ 𝒫
(Vtx‘𝐺) ∧ (𝑦 ≈ 1o ∨
𝑦 ≈ 2o))
→ (𝑦 ≈
2o → 𝑦
∈ {𝑥 ∈ 𝒫
(Vtx‘𝐺) ∣ 𝑥 ≈
2o})) |
| 23 | 19, 22 | sylbi 121 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} →
(𝑦 ≈ 2o
→ 𝑦 ∈ {𝑥 ∈ 𝒫
(Vtx‘𝐺) ∣ 𝑥 ≈
2o})) |
| 24 | 15, 23 | syl9 72 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ran (iEdg‘𝐺) → (𝑦 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} →
(∀𝑒 ∈ ran
(iEdg‘𝐺)𝑒 ≈ 2o →
𝑦 ∈ {𝑥 ∈ 𝒫
(Vtx‘𝐺) ∣ 𝑥 ≈
2o}))) |
| 25 | 13, 24 | syld 45 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ran (iEdg‘𝐺) → (ran (iEdg‘𝐺) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} →
(∀𝑒 ∈ ran
(iEdg‘𝐺)𝑒 ≈ 2o →
𝑦 ∈ {𝑥 ∈ 𝒫
(Vtx‘𝐺) ∣ 𝑥 ≈
2o}))) |
| 26 | 25 | com13 80 |
. . . . . . . . . . . 12
⊢
(∀𝑒 ∈
ran (iEdg‘𝐺)𝑒 ≈ 2o →
(ran (iEdg‘𝐺) ⊆
{𝑥 ∈ 𝒫
(Vtx‘𝐺) ∣
(𝑥 ≈ 1o
∨ 𝑥 ≈
2o)} → (𝑦
∈ ran (iEdg‘𝐺)
→ 𝑦 ∈ {𝑥 ∈ 𝒫
(Vtx‘𝐺) ∣ 𝑥 ≈
2o}))) |
| 27 | 26 | imp 124 |
. . . . . . . . . . 11
⊢
((∀𝑒 ∈
ran (iEdg‘𝐺)𝑒 ≈ 2o ∧ ran
(iEdg‘𝐺) ⊆
{𝑥 ∈ 𝒫
(Vtx‘𝐺) ∣
(𝑥 ≈ 1o
∨ 𝑥 ≈
2o)}) → (𝑦
∈ ran (iEdg‘𝐺)
→ 𝑦 ∈ {𝑥 ∈ 𝒫
(Vtx‘𝐺) ∣ 𝑥 ≈
2o})) |
| 28 | 27 | ssrdv 3208 |
. . . . . . . . . 10
⊢
((∀𝑒 ∈
ran (iEdg‘𝐺)𝑒 ≈ 2o ∧ ran
(iEdg‘𝐺) ⊆
{𝑥 ∈ 𝒫
(Vtx‘𝐺) ∣
(𝑥 ≈ 1o
∨ 𝑥 ≈
2o)}) → ran (iEdg‘𝐺) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 𝑥 ≈ 2o}) |
| 29 | 28 | ex 115 |
. . . . . . . . 9
⊢
(∀𝑒 ∈
ran (iEdg‘𝐺)𝑒 ≈ 2o →
(ran (iEdg‘𝐺) ⊆
{𝑥 ∈ 𝒫
(Vtx‘𝐺) ∣
(𝑥 ≈ 1o
∨ 𝑥 ≈
2o)} → ran (iEdg‘𝐺) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 𝑥 ≈ 2o})) |
| 30 | 11, 29 | mpan9 281 |
. . . . . . . 8
⊢
(((iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} ∧
∀𝑒 ∈ ran
(iEdg‘𝐺)𝑒 ≈ 2o) →
ran (iEdg‘𝐺) ⊆
{𝑥 ∈ 𝒫
(Vtx‘𝐺) ∣ 𝑥 ≈
2o}) |
| 31 | | f1ssr 5511 |
. . . . . . . 8
⊢
(((iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} ∧
ran (iEdg‘𝐺) ⊆
{𝑥 ∈ 𝒫
(Vtx‘𝐺) ∣ 𝑥 ≈ 2o}) →
(iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 𝑥 ≈ 2o}) |
| 32 | 30, 31 | syldan 282 |
. . . . . . 7
⊢
(((iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} ∧
∀𝑒 ∈ ran
(iEdg‘𝐺)𝑒 ≈ 2o) →
(iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 𝑥 ≈ 2o}) |
| 33 | 32 | ex 115 |
. . . . . 6
⊢
((iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (𝑥 ≈ 1o ∨ 𝑥 ≈ 2o)} →
(∀𝑒 ∈ ran
(iEdg‘𝐺)𝑒 ≈ 2o →
(iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 𝑥 ≈ 2o})) |
| 34 | 10, 33 | syl 14 |
. . . . 5
⊢ (𝐺 ∈ USPGraph →
(∀𝑒 ∈ ran
(iEdg‘𝐺)𝑒 ≈ 2o →
(iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 𝑥 ≈ 2o})) |
| 35 | 7, 34 | sylbid 150 |
. . . 4
⊢ (𝐺 ∈ USPGraph →
(∀𝑒 ∈
(Edg‘𝐺)𝑒 ≈ 2o →
(iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 𝑥 ≈ 2o})) |
| 36 | 35 | imp 124 |
. . 3
⊢ ((𝐺 ∈ USPGraph ∧
∀𝑒 ∈
(Edg‘𝐺)𝑒 ≈ 2o) →
(iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 𝑥 ≈ 2o}) |
| 37 | 8, 9 | isusgren 15913 |
. . . 4
⊢ (𝐺 ∈ USPGraph → (𝐺 ∈ USGraph ↔
(iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 𝑥 ≈ 2o})) |
| 38 | 37 | adantr 276 |
. . 3
⊢ ((𝐺 ∈ USPGraph ∧
∀𝑒 ∈
(Edg‘𝐺)𝑒 ≈ 2o) →
(𝐺 ∈ USGraph ↔
(iEdg‘𝐺):dom
(iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 𝑥 ≈ 2o})) |
| 39 | 36, 38 | mpbird 167 |
. 2
⊢ ((𝐺 ∈ USPGraph ∧
∀𝑒 ∈
(Edg‘𝐺)𝑒 ≈ 2o) →
𝐺 ∈
USGraph) |
| 40 | 5, 39 | impbii 126 |
1
⊢ (𝐺 ∈ USGraph ↔ (𝐺 ∈ USPGraph ∧
∀𝑒 ∈
(Edg‘𝐺)𝑒 ≈
2o)) |