ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  usgruspgrben GIF version

Theorem usgruspgrben 15984
Description: A class is a simple graph iff it is a simple pseudograph without loops. (Contributed by AV, 18-Oct-2020.)
Assertion
Ref Expression
usgruspgrben (𝐺 ∈ USGraph ↔ (𝐺 ∈ USPGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑒 ≈ 2o))
Distinct variable group:   𝑒,𝐺

Proof of Theorem usgruspgrben
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 usgruspgr 15981 . . 3 (𝐺 ∈ USGraph → 𝐺 ∈ USPGraph)
2 edgusgren 15961 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → (𝑒 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝑒 ≈ 2o))
32simprd 114 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑒 ∈ (Edg‘𝐺)) → 𝑒 ≈ 2o)
43ralrimiva 2603 . . 3 (𝐺 ∈ USGraph → ∀𝑒 ∈ (Edg‘𝐺)𝑒 ≈ 2o)
51, 4jca 306 . 2 (𝐺 ∈ USGraph → (𝐺 ∈ USPGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑒 ≈ 2o))
6 edgvalg 15860 . . . . . 6 (𝐺 ∈ USPGraph → (Edg‘𝐺) = ran (iEdg‘𝐺))
76raleqdv 2734 . . . . 5 (𝐺 ∈ USPGraph → (∀𝑒 ∈ (Edg‘𝐺)𝑒 ≈ 2o ↔ ∀𝑒 ∈ ran (iEdg‘𝐺)𝑒 ≈ 2o))
8 eqid 2229 . . . . . . 7 (Vtx‘𝐺) = (Vtx‘𝐺)
9 eqid 2229 . . . . . . 7 (iEdg‘𝐺) = (iEdg‘𝐺)
108, 9uspgrfen 15957 . . . . . 6 (𝐺 ∈ USPGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)})
11 f1rn 5532 . . . . . . . . 9 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)} → ran (iEdg‘𝐺) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)})
12 ssel2 3219 . . . . . . . . . . . . . . 15 ((ran (iEdg‘𝐺) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)} ∧ 𝑦 ∈ ran (iEdg‘𝐺)) → 𝑦 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)})
1312expcom 116 . . . . . . . . . . . . . 14 (𝑦 ∈ ran (iEdg‘𝐺) → (ran (iEdg‘𝐺) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)} → 𝑦 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)}))
14 breq1 4086 . . . . . . . . . . . . . . . 16 (𝑒 = 𝑦 → (𝑒 ≈ 2o𝑦 ≈ 2o))
1514rspcv 2903 . . . . . . . . . . . . . . 15 (𝑦 ∈ ran (iEdg‘𝐺) → (∀𝑒 ∈ ran (iEdg‘𝐺)𝑒 ≈ 2o𝑦 ≈ 2o))
16 breq1 4086 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (𝑥 ≈ 1o𝑦 ≈ 1o))
17 breq1 4086 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑦 → (𝑥 ≈ 2o𝑦 ≈ 2o))
1816, 17orbi12d 798 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → ((𝑥 ≈ 1o𝑥 ≈ 2o) ↔ (𝑦 ≈ 1o𝑦 ≈ 2o)))
1918elrab 2959 . . . . . . . . . . . . . . . 16 (𝑦 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)} ↔ (𝑦 ∈ 𝒫 (Vtx‘𝐺) ∧ (𝑦 ≈ 1o𝑦 ≈ 2o)))
2017elrab 2959 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 𝑥 ≈ 2o} ↔ (𝑦 ∈ 𝒫 (Vtx‘𝐺) ∧ 𝑦 ≈ 2o))
2120simplbi2 385 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ 𝒫 (Vtx‘𝐺) → (𝑦 ≈ 2o𝑦 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 𝑥 ≈ 2o}))
2221adantr 276 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ 𝒫 (Vtx‘𝐺) ∧ (𝑦 ≈ 1o𝑦 ≈ 2o)) → (𝑦 ≈ 2o𝑦 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 𝑥 ≈ 2o}))
2319, 22sylbi 121 . . . . . . . . . . . . . . 15 (𝑦 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)} → (𝑦 ≈ 2o𝑦 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 𝑥 ≈ 2o}))
2415, 23syl9 72 . . . . . . . . . . . . . 14 (𝑦 ∈ ran (iEdg‘𝐺) → (𝑦 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)} → (∀𝑒 ∈ ran (iEdg‘𝐺)𝑒 ≈ 2o𝑦 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 𝑥 ≈ 2o})))
2513, 24syld 45 . . . . . . . . . . . . 13 (𝑦 ∈ ran (iEdg‘𝐺) → (ran (iEdg‘𝐺) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)} → (∀𝑒 ∈ ran (iEdg‘𝐺)𝑒 ≈ 2o𝑦 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 𝑥 ≈ 2o})))
2625com13 80 . . . . . . . . . . . 12 (∀𝑒 ∈ ran (iEdg‘𝐺)𝑒 ≈ 2o → (ran (iEdg‘𝐺) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)} → (𝑦 ∈ ran (iEdg‘𝐺) → 𝑦 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 𝑥 ≈ 2o})))
2726imp 124 . . . . . . . . . . 11 ((∀𝑒 ∈ ran (iEdg‘𝐺)𝑒 ≈ 2o ∧ ran (iEdg‘𝐺) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)}) → (𝑦 ∈ ran (iEdg‘𝐺) → 𝑦 ∈ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 𝑥 ≈ 2o}))
2827ssrdv 3230 . . . . . . . . . 10 ((∀𝑒 ∈ ran (iEdg‘𝐺)𝑒 ≈ 2o ∧ ran (iEdg‘𝐺) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)}) → ran (iEdg‘𝐺) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 𝑥 ≈ 2o})
2928ex 115 . . . . . . . . 9 (∀𝑒 ∈ ran (iEdg‘𝐺)𝑒 ≈ 2o → (ran (iEdg‘𝐺) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)} → ran (iEdg‘𝐺) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 𝑥 ≈ 2o}))
3011, 29mpan9 281 . . . . . . . 8 (((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)} ∧ ∀𝑒 ∈ ran (iEdg‘𝐺)𝑒 ≈ 2o) → ran (iEdg‘𝐺) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 𝑥 ≈ 2o})
31 f1ssr 5538 . . . . . . . 8 (((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)} ∧ ran (iEdg‘𝐺) ⊆ {𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 𝑥 ≈ 2o}) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 𝑥 ≈ 2o})
3230, 31syldan 282 . . . . . . 7 (((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)} ∧ ∀𝑒 ∈ ran (iEdg‘𝐺)𝑒 ≈ 2o) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 𝑥 ≈ 2o})
3332ex 115 . . . . . 6 ((iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ (𝑥 ≈ 1o𝑥 ≈ 2o)} → (∀𝑒 ∈ ran (iEdg‘𝐺)𝑒 ≈ 2o → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 𝑥 ≈ 2o}))
3410, 33syl 14 . . . . 5 (𝐺 ∈ USPGraph → (∀𝑒 ∈ ran (iEdg‘𝐺)𝑒 ≈ 2o → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 𝑥 ≈ 2o}))
357, 34sylbid 150 . . . 4 (𝐺 ∈ USPGraph → (∀𝑒 ∈ (Edg‘𝐺)𝑒 ≈ 2o → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 𝑥 ≈ 2o}))
3635imp 124 . . 3 ((𝐺 ∈ USPGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑒 ≈ 2o) → (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 𝑥 ≈ 2o})
378, 9isusgren 15956 . . . 4 (𝐺 ∈ USPGraph → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 𝑥 ≈ 2o}))
3837adantr 276 . . 3 ((𝐺 ∈ USPGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑒 ≈ 2o) → (𝐺 ∈ USGraph ↔ (iEdg‘𝐺):dom (iEdg‘𝐺)–1-1→{𝑥 ∈ 𝒫 (Vtx‘𝐺) ∣ 𝑥 ≈ 2o}))
3936, 38mpbird 167 . 2 ((𝐺 ∈ USPGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑒 ≈ 2o) → 𝐺 ∈ USGraph)
405, 39impbii 126 1 (𝐺 ∈ USGraph ↔ (𝐺 ∈ USPGraph ∧ ∀𝑒 ∈ (Edg‘𝐺)𝑒 ≈ 2o))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 713  wcel 2200  wral 2508  {crab 2512  wss 3197  𝒫 cpw 3649   class class class wbr 4083  dom cdm 4719  ran crn 4720  1-1wf1 5315  cfv 5318  1oc1o 6555  2oc2o 6556  cen 6885  Vtxcvtx 15813  iEdgciedg 15814  Edgcedg 15858  USPGraphcuspgr 15951  USGraphcusgr 15952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-sub 8319  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-5 9172  df-6 9173  df-7 9174  df-8 9175  df-9 9176  df-n0 9370  df-dec 9579  df-ndx 13035  df-slot 13036  df-base 13038  df-edgf 15806  df-vtx 15815  df-iedg 15816  df-edg 15859  df-uspgren 15953  df-usgren 15954
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator