ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srascag Unicode version

Theorem srascag 13941
Description: The set of scalars of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Proof shortened by AV, 12-Nov-2024.)
Hypotheses
Ref Expression
srapart.a  |-  ( ph  ->  A  =  ( (subringAlg  `  W ) `  S
) )
srapart.s  |-  ( ph  ->  S  C_  ( Base `  W ) )
srapart.ex  |-  ( ph  ->  W  e.  X )
Assertion
Ref Expression
srascag  |-  ( ph  ->  ( Ws  S )  =  (Scalar `  A ) )

Proof of Theorem srascag
StepHypRef Expression
1 srapart.ex . . . . 5  |-  ( ph  ->  W  e.  X )
2 scaslid 12773 . . . . . . 7  |-  (Scalar  = Slot  (Scalar `  ndx )  /\  (Scalar `  ndx )  e.  NN )
32simpri 113 . . . . . 6  |-  (Scalar `  ndx )  e.  NN
43a1i 9 . . . . 5  |-  ( ph  ->  (Scalar `  ndx )  e.  NN )
5 basfn 12679 . . . . . . . 8  |-  Base  Fn  _V
61elexd 2773 . . . . . . . 8  |-  ( ph  ->  W  e.  _V )
7 funfvex 5572 . . . . . . . . 9  |-  ( ( Fun  Base  /\  W  e. 
dom  Base )  ->  ( Base `  W )  e. 
_V )
87funfni 5355 . . . . . . . 8  |-  ( (
Base  Fn  _V  /\  W  e.  _V )  ->  ( Base `  W )  e. 
_V )
95, 6, 8sylancr 414 . . . . . . 7  |-  ( ph  ->  ( Base `  W
)  e.  _V )
10 srapart.s . . . . . . 7  |-  ( ph  ->  S  C_  ( Base `  W ) )
119, 10ssexd 4170 . . . . . 6  |-  ( ph  ->  S  e.  _V )
12 ressex 12686 . . . . . 6  |-  ( ( W  e.  X  /\  S  e.  _V )  ->  ( Ws  S )  e.  _V )
131, 11, 12syl2anc 411 . . . . 5  |-  ( ph  ->  ( Ws  S )  e.  _V )
14 setsex 12653 . . . . 5  |-  ( ( W  e.  X  /\  (Scalar `  ndx )  e.  NN  /\  ( Ws  S )  e.  _V )  ->  ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. )  e.  _V )
151, 4, 13, 14syl3anc 1249 . . . 4  |-  ( ph  ->  ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. )  e.  _V )
16 mulrslid 12752 . . . . . 6  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
1716slotex 12648 . . . . 5  |-  ( W  e.  X  ->  ( .r `  W )  e. 
_V )
181, 17syl 14 . . . 4  |-  ( ph  ->  ( .r `  W
)  e.  _V )
19 vscandxnscandx 12782 . . . . . 6  |-  ( .s
`  ndx )  =/=  (Scalar ` 
ndx )
2019necomi 2449 . . . . 5  |-  (Scalar `  ndx )  =/=  ( .s `  ndx )
21 vscaslid 12783 . . . . . 6  |-  ( .s  = Slot  ( .s `  ndx )  /\  ( .s `  ndx )  e.  NN )
2221simpri 113 . . . . 5  |-  ( .s
`  ndx )  e.  NN
232, 20, 22setsslnid 12673 . . . 4  |-  ( ( ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. )  e.  _V  /\  ( .r
`  W )  e. 
_V )  ->  (Scalar `  ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. )
)  =  (Scalar `  ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )
) )
2415, 18, 23syl2anc 411 . . 3  |-  ( ph  ->  (Scalar `  ( W sSet  <.
(Scalar `  ndx ) ,  ( Ws  S ) >. )
)  =  (Scalar `  ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )
) )
2522a1i 9 . . . . 5  |-  ( ph  ->  ( .s `  ndx )  e.  NN )
26 setsex 12653 . . . . 5  |-  ( ( ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. )  e.  _V  /\  ( .s
`  ndx )  e.  NN  /\  ( .r `  W
)  e.  _V )  ->  ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )  e.  _V )
2715, 25, 18, 26syl3anc 1249 . . . 4  |-  ( ph  ->  ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )  e.  _V )
28 slotsdifipndx 12795 . . . . . 6  |-  ( ( .s `  ndx )  =/=  ( .i `  ndx )  /\  (Scalar `  ndx )  =/=  ( .i `  ndx ) )
2928simpri 113 . . . . 5  |-  (Scalar `  ndx )  =/=  ( .i `  ndx )
30 ipslid 12791 . . . . . 6  |-  ( .i  = Slot  ( .i `  ndx )  /\  ( .i `  ndx )  e.  NN )
3130simpri 113 . . . . 5  |-  ( .i
`  ndx )  e.  NN
322, 29, 31setsslnid 12673 . . . 4  |-  ( ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )  e.  _V  /\  ( .r
`  W )  e. 
_V )  ->  (Scalar `  ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )
)  =  (Scalar `  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
) )
3327, 18, 32syl2anc 411 . . 3  |-  ( ph  ->  (Scalar `  ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S
) >. ) sSet  <. ( .s `  ndx ) ,  ( .r `  W
) >. ) )  =  (Scalar `  ( (
( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <. ( .s `  ndx ) ,  ( .r `  W
) >. ) sSet  <. ( .i `  ndx ) ,  ( .r `  W
) >. ) ) )
3424, 33eqtrd 2226 . 2  |-  ( ph  ->  (Scalar `  ( W sSet  <.
(Scalar `  ndx ) ,  ( Ws  S ) >. )
)  =  (Scalar `  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
) )
352setsslid 12672 . . 3  |-  ( ( W  e.  X  /\  ( Ws  S )  e.  _V )  ->  ( Ws  S )  =  (Scalar `  ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S
) >. ) ) )
361, 13, 35syl2anc 411 . 2  |-  ( ph  ->  ( Ws  S )  =  (Scalar `  ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. )
) )
37 srapart.a . . . 4  |-  ( ph  ->  A  =  ( (subringAlg  `  W ) `  S
) )
38 sraval 13936 . . . . 5  |-  ( ( W  e.  _V  /\  S  C_  ( Base `  W
) )  ->  (
(subringAlg  `  W ) `  S )  =  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
)
396, 10, 38syl2anc 411 . . . 4  |-  ( ph  ->  ( (subringAlg  `  W ) `
 S )  =  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
)
4037, 39eqtrd 2226 . . 3  |-  ( ph  ->  A  =  ( ( ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
)
4140fveq2d 5559 . 2  |-  ( ph  ->  (Scalar `  A )  =  (Scalar `  ( (
( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <. ( .s `  ndx ) ,  ( .r `  W
) >. ) sSet  <. ( .i `  ndx ) ,  ( .r `  W
) >. ) ) )
4234, 36, 413eqtr4d 2236 1  |-  ( ph  ->  ( Ws  S )  =  (Scalar `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164    =/= wne 2364   _Vcvv 2760    C_ wss 3154   <.cop 3622    Fn wfn 5250   ` cfv 5255  (class class class)co 5919   NNcn 8984   ndxcnx 12618   sSet csts 12619  Slot cslot 12620   Basecbs 12621   ↾s cress 12622   .rcmulr 12699  Scalarcsca 12701   .scvsca 12702   .icip 12703  subringAlg csra 13932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-mulr 12712  df-sca 12714  df-vsca 12715  df-ip 12716  df-sra 13934
This theorem is referenced by:  sralmod  13949  rlmscabas  13959
  Copyright terms: Public domain W3C validator