ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srascag Unicode version

Theorem srascag 13998
Description: The set of scalars of a subring algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 4-Oct-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Proof shortened by AV, 12-Nov-2024.)
Hypotheses
Ref Expression
srapart.a  |-  ( ph  ->  A  =  ( (subringAlg  `  W ) `  S
) )
srapart.s  |-  ( ph  ->  S  C_  ( Base `  W ) )
srapart.ex  |-  ( ph  ->  W  e.  X )
Assertion
Ref Expression
srascag  |-  ( ph  ->  ( Ws  S )  =  (Scalar `  A ) )

Proof of Theorem srascag
StepHypRef Expression
1 srapart.ex . . . . 5  |-  ( ph  ->  W  e.  X )
2 scaslid 12830 . . . . . . 7  |-  (Scalar  = Slot  (Scalar `  ndx )  /\  (Scalar `  ndx )  e.  NN )
32simpri 113 . . . . . 6  |-  (Scalar `  ndx )  e.  NN
43a1i 9 . . . . 5  |-  ( ph  ->  (Scalar `  ndx )  e.  NN )
5 basfn 12736 . . . . . . . 8  |-  Base  Fn  _V
61elexd 2776 . . . . . . . 8  |-  ( ph  ->  W  e.  _V )
7 funfvex 5575 . . . . . . . . 9  |-  ( ( Fun  Base  /\  W  e. 
dom  Base )  ->  ( Base `  W )  e. 
_V )
87funfni 5358 . . . . . . . 8  |-  ( (
Base  Fn  _V  /\  W  e.  _V )  ->  ( Base `  W )  e. 
_V )
95, 6, 8sylancr 414 . . . . . . 7  |-  ( ph  ->  ( Base `  W
)  e.  _V )
10 srapart.s . . . . . . 7  |-  ( ph  ->  S  C_  ( Base `  W ) )
119, 10ssexd 4173 . . . . . 6  |-  ( ph  ->  S  e.  _V )
12 ressex 12743 . . . . . 6  |-  ( ( W  e.  X  /\  S  e.  _V )  ->  ( Ws  S )  e.  _V )
131, 11, 12syl2anc 411 . . . . 5  |-  ( ph  ->  ( Ws  S )  e.  _V )
14 setsex 12710 . . . . 5  |-  ( ( W  e.  X  /\  (Scalar `  ndx )  e.  NN  /\  ( Ws  S )  e.  _V )  ->  ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. )  e.  _V )
151, 4, 13, 14syl3anc 1249 . . . 4  |-  ( ph  ->  ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. )  e.  _V )
16 mulrslid 12809 . . . . . 6  |-  ( .r  = Slot  ( .r `  ndx )  /\  ( .r `  ndx )  e.  NN )
1716slotex 12705 . . . . 5  |-  ( W  e.  X  ->  ( .r `  W )  e. 
_V )
181, 17syl 14 . . . 4  |-  ( ph  ->  ( .r `  W
)  e.  _V )
19 vscandxnscandx 12839 . . . . . 6  |-  ( .s
`  ndx )  =/=  (Scalar ` 
ndx )
2019necomi 2452 . . . . 5  |-  (Scalar `  ndx )  =/=  ( .s `  ndx )
21 vscaslid 12840 . . . . . 6  |-  ( .s  = Slot  ( .s `  ndx )  /\  ( .s `  ndx )  e.  NN )
2221simpri 113 . . . . 5  |-  ( .s
`  ndx )  e.  NN
232, 20, 22setsslnid 12730 . . . 4  |-  ( ( ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. )  e.  _V  /\  ( .r
`  W )  e. 
_V )  ->  (Scalar `  ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. )
)  =  (Scalar `  ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )
) )
2415, 18, 23syl2anc 411 . . 3  |-  ( ph  ->  (Scalar `  ( W sSet  <.
(Scalar `  ndx ) ,  ( Ws  S ) >. )
)  =  (Scalar `  ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )
) )
2522a1i 9 . . . . 5  |-  ( ph  ->  ( .s `  ndx )  e.  NN )
26 setsex 12710 . . . . 5  |-  ( ( ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. )  e.  _V  /\  ( .s
`  ndx )  e.  NN  /\  ( .r `  W
)  e.  _V )  ->  ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )  e.  _V )
2715, 25, 18, 26syl3anc 1249 . . . 4  |-  ( ph  ->  ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )  e.  _V )
28 slotsdifipndx 12852 . . . . . 6  |-  ( ( .s `  ndx )  =/=  ( .i `  ndx )  /\  (Scalar `  ndx )  =/=  ( .i `  ndx ) )
2928simpri 113 . . . . 5  |-  (Scalar `  ndx )  =/=  ( .i `  ndx )
30 ipslid 12848 . . . . . 6  |-  ( .i  = Slot  ( .i `  ndx )  /\  ( .i `  ndx )  e.  NN )
3130simpri 113 . . . . 5  |-  ( .i
`  ndx )  e.  NN
322, 29, 31setsslnid 12730 . . . 4  |-  ( ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )  e.  _V  /\  ( .r
`  W )  e. 
_V )  ->  (Scalar `  ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. )
)  =  (Scalar `  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
) )
3327, 18, 32syl2anc 411 . . 3  |-  ( ph  ->  (Scalar `  ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S
) >. ) sSet  <. ( .s `  ndx ) ,  ( .r `  W
) >. ) )  =  (Scalar `  ( (
( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <. ( .s `  ndx ) ,  ( .r `  W
) >. ) sSet  <. ( .i `  ndx ) ,  ( .r `  W
) >. ) ) )
3424, 33eqtrd 2229 . 2  |-  ( ph  ->  (Scalar `  ( W sSet  <.
(Scalar `  ndx ) ,  ( Ws  S ) >. )
)  =  (Scalar `  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
) )
352setsslid 12729 . . 3  |-  ( ( W  e.  X  /\  ( Ws  S )  e.  _V )  ->  ( Ws  S )  =  (Scalar `  ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S
) >. ) ) )
361, 13, 35syl2anc 411 . 2  |-  ( ph  ->  ( Ws  S )  =  (Scalar `  ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. )
) )
37 srapart.a . . . 4  |-  ( ph  ->  A  =  ( (subringAlg  `  W ) `  S
) )
38 sraval 13993 . . . . 5  |-  ( ( W  e.  _V  /\  S  C_  ( Base `  W
) )  ->  (
(subringAlg  `  W ) `  S )  =  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
)
396, 10, 38syl2anc 411 . . . 4  |-  ( ph  ->  ( (subringAlg  `  W ) `
 S )  =  ( ( ( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
)
4037, 39eqtrd 2229 . . 3  |-  ( ph  ->  A  =  ( ( ( W sSet  <. (Scalar ` 
ndx ) ,  ( Ws  S ) >. ) sSet  <.
( .s `  ndx ) ,  ( .r `  W ) >. ) sSet  <.
( .i `  ndx ) ,  ( .r `  W ) >. )
)
4140fveq2d 5562 . 2  |-  ( ph  ->  (Scalar `  A )  =  (Scalar `  ( (
( W sSet  <. (Scalar `  ndx ) ,  ( Ws  S ) >. ) sSet  <. ( .s `  ndx ) ,  ( .r `  W
) >. ) sSet  <. ( .i `  ndx ) ,  ( .r `  W
) >. ) ) )
4234, 36, 413eqtr4d 2239 1  |-  ( ph  ->  ( Ws  S )  =  (Scalar `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167    =/= wne 2367   _Vcvv 2763    C_ wss 3157   <.cop 3625    Fn wfn 5253   ` cfv 5258  (class class class)co 5922   NNcn 8990   ndxcnx 12675   sSet csts 12676  Slot cslot 12677   Basecbs 12678   ↾s cress 12679   .rcmulr 12756  Scalarcsca 12758   .scvsca 12759   .icip 12760  subringAlg csra 13989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-5 9052  df-6 9053  df-7 9054  df-8 9055  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-mulr 12769  df-sca 12771  df-vsca 12772  df-ip 12773  df-sra 13991
This theorem is referenced by:  sralmod  14006  rlmscabas  14016
  Copyright terms: Public domain W3C validator