ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1arithlem2 GIF version

Theorem 1arithlem2 12309
Description: Lemma for 1arith 12312. (Contributed by Mario Carneiro, 30-May-2014.)
Hypothesis
Ref Expression
1arith.1 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))
Assertion
Ref Expression
1arithlem2 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((𝑀𝑁)‘𝑃) = (𝑃 pCnt 𝑁))
Distinct variable groups:   𝑛,𝑝,𝑁   𝑃,𝑝
Allowed substitution hints:   𝑃(𝑛)   𝑀(𝑛,𝑝)

Proof of Theorem 1arithlem2
StepHypRef Expression
1 1arith.1 . . . . 5 𝑀 = (𝑛 ∈ ℕ ↦ (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑛)))
211arithlem1 12308 . . . 4 (𝑁 ∈ ℕ → (𝑀𝑁) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑁)))
32fveq1d 5496 . . 3 (𝑁 ∈ ℕ → ((𝑀𝑁)‘𝑃) = ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑁))‘𝑃))
43adantr 274 . 2 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((𝑀𝑁)‘𝑃) = ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑁))‘𝑃))
5 eqid 2170 . . 3 (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑁)) = (𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑁))
6 oveq1 5858 . . 3 (𝑝 = 𝑃 → (𝑝 pCnt 𝑁) = (𝑃 pCnt 𝑁))
7 simpr 109 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → 𝑃 ∈ ℙ)
8 pccl 12246 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑃 pCnt 𝑁) ∈ ℕ0)
98ancoms 266 . . 3 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → (𝑃 pCnt 𝑁) ∈ ℕ0)
105, 6, 7, 9fvmptd3 5587 . 2 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((𝑝 ∈ ℙ ↦ (𝑝 pCnt 𝑁))‘𝑃) = (𝑃 pCnt 𝑁))
114, 10eqtrd 2203 1 ((𝑁 ∈ ℕ ∧ 𝑃 ∈ ℙ) → ((𝑀𝑁)‘𝑃) = (𝑃 pCnt 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  cmpt 4048  cfv 5196  (class class class)co 5851  cn 8871  0cn0 9128  cprime 12054   pCnt cpc 12231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7858  ax-resscn 7859  ax-1cn 7860  ax-1re 7861  ax-icn 7862  ax-addcl 7863  ax-addrcl 7864  ax-mulcl 7865  ax-mulrcl 7866  ax-addcom 7867  ax-mulcom 7868  ax-addass 7869  ax-mulass 7870  ax-distr 7871  ax-i2m1 7872  ax-0lt1 7873  ax-1rid 7874  ax-0id 7875  ax-rnegex 7876  ax-precex 7877  ax-cnre 7878  ax-pre-ltirr 7879  ax-pre-ltwlin 7880  ax-pre-lttrn 7881  ax-pre-apti 7882  ax-pre-ltadd 7883  ax-pre-mulgt0 7884  ax-pre-mulext 7885  ax-arch 7886  ax-caucvg 7887
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-isom 5205  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-recs 6282  df-frec 6368  df-1o 6393  df-2o 6394  df-er 6511  df-en 6717  df-sup 6959  df-inf 6960  df-pnf 7949  df-mnf 7950  df-xr 7951  df-ltxr 7952  df-le 7953  df-sub 8085  df-neg 8086  df-reap 8487  df-ap 8494  df-div 8583  df-inn 8872  df-2 8930  df-3 8931  df-4 8932  df-n0 9129  df-z 9206  df-uz 9481  df-q 9572  df-rp 9604  df-fz 9959  df-fzo 10092  df-fl 10219  df-mod 10272  df-seqfrec 10395  df-exp 10469  df-cj 10799  df-re 10800  df-im 10801  df-rsqrt 10955  df-abs 10956  df-dvds 11743  df-gcd 11891  df-prm 12055  df-pc 12232
This theorem is referenced by:  1arithlem4  12311  1arith  12312
  Copyright terms: Public domain W3C validator