ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemsumlt GIF version

Theorem cvgratnnlemsumlt 11554
Description: Lemma for cvgratnn 11557. (Contributed by Jim Kingdon, 23-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3 (𝜑𝐴 ∈ ℝ)
cvgratnn.4 (𝜑𝐴 < 1)
cvgratnn.gt0 (𝜑 → 0 < 𝐴)
cvgratnn.6 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
cvgratnn.7 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
cvgratnn.m (𝜑𝑀 ∈ ℕ)
cvgratnn.n (𝜑𝑁 ∈ (ℤ𝑀))
Assertion
Ref Expression
cvgratnnlemsumlt (𝜑 → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀)) < (𝐴 / (1 − 𝐴)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑁   𝜑,𝑘   𝐴,𝑖,𝑘   𝑖,𝑀,𝑘   𝑖,𝑁   𝜑,𝑖
Allowed substitution hint:   𝐹(𝑖)

Proof of Theorem cvgratnnlemsumlt
StepHypRef Expression
1 cvgratnn.m . . . . 5 (𝜑𝑀 ∈ ℕ)
21nnzd 9392 . . . 4 (𝜑𝑀 ∈ ℤ)
3 1zzd 9298 . . . 4 (𝜑 → 1 ∈ ℤ)
4 cvgratnn.n . . . . . 6 (𝜑𝑁 ∈ (ℤ𝑀))
5 eluzelz 9555 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
64, 5syl 14 . . . . 5 (𝜑𝑁 ∈ ℤ)
76, 2zsubcld 9398 . . . 4 (𝜑 → (𝑁𝑀) ∈ ℤ)
8 cvgratnn.3 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
98recnd 8004 . . . . . 6 (𝜑𝐴 ∈ ℂ)
109adantr 276 . . . . 5 ((𝜑𝑘 ∈ (1...(𝑁𝑀))) → 𝐴 ∈ ℂ)
11 elfznn 10072 . . . . . . 7 (𝑘 ∈ (1...(𝑁𝑀)) → 𝑘 ∈ ℕ)
1211adantl 277 . . . . . 6 ((𝜑𝑘 ∈ (1...(𝑁𝑀))) → 𝑘 ∈ ℕ)
1312nnnn0d 9247 . . . . 5 ((𝜑𝑘 ∈ (1...(𝑁𝑀))) → 𝑘 ∈ ℕ0)
1410, 13expcld 10672 . . . 4 ((𝜑𝑘 ∈ (1...(𝑁𝑀))) → (𝐴𝑘) ∈ ℂ)
15 oveq2 5899 . . . 4 (𝑘 = (𝑖𝑀) → (𝐴𝑘) = (𝐴↑(𝑖𝑀)))
162, 3, 7, 14, 15fsumshft 11470 . . 3 (𝜑 → Σ𝑘 ∈ (1...(𝑁𝑀))(𝐴𝑘) = Σ𝑖 ∈ ((1 + 𝑀)...((𝑁𝑀) + 𝑀))(𝐴↑(𝑖𝑀)))
17 1cnd 7991 . . . . . 6 (𝜑 → 1 ∈ ℂ)
181nncnd 8951 . . . . . 6 (𝜑𝑀 ∈ ℂ)
1917, 18addcomd 8126 . . . . 5 (𝜑 → (1 + 𝑀) = (𝑀 + 1))
206zcnd 9394 . . . . . 6 (𝜑𝑁 ∈ ℂ)
2120, 18npcand 8290 . . . . 5 (𝜑 → ((𝑁𝑀) + 𝑀) = 𝑁)
2219, 21oveq12d 5909 . . . 4 (𝜑 → ((1 + 𝑀)...((𝑁𝑀) + 𝑀)) = ((𝑀 + 1)...𝑁))
2322sumeq1d 11392 . . 3 (𝜑 → Σ𝑖 ∈ ((1 + 𝑀)...((𝑁𝑀) + 𝑀))(𝐴↑(𝑖𝑀)) = Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀)))
2416, 23eqtrd 2222 . 2 (𝜑 → Σ𝑘 ∈ (1...(𝑁𝑀))(𝐴𝑘) = Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀)))
25 fzval3 10222 . . . . 5 ((𝑁𝑀) ∈ ℤ → (1...(𝑁𝑀)) = (1..^((𝑁𝑀) + 1)))
2625sumeq1d 11392 . . . 4 ((𝑁𝑀) ∈ ℤ → Σ𝑘 ∈ (1...(𝑁𝑀))(𝐴𝑘) = Σ𝑘 ∈ (1..^((𝑁𝑀) + 1))(𝐴𝑘))
277, 26syl 14 . . 3 (𝜑 → Σ𝑘 ∈ (1...(𝑁𝑀))(𝐴𝑘) = Σ𝑘 ∈ (1..^((𝑁𝑀) + 1))(𝐴𝑘))
28 1red 7990 . . . . . 6 (𝜑 → 1 ∈ ℝ)
29 cvgratnn.4 . . . . . 6 (𝜑𝐴 < 1)
308, 28, 29ltapd 8613 . . . . 5 (𝜑𝐴 # 1)
31 1nn0 9210 . . . . . 6 1 ∈ ℕ0
3231a1i 9 . . . . 5 (𝜑 → 1 ∈ ℕ0)
337peano2zd 9396 . . . . . 6 (𝜑 → ((𝑁𝑀) + 1) ∈ ℤ)
34 eluzle 9558 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)
354, 34syl 14 . . . . . . . 8 (𝜑𝑀𝑁)
366zred 9393 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ)
371nnred 8950 . . . . . . . . 9 (𝜑𝑀 ∈ ℝ)
3836, 37subge0d 8510 . . . . . . . 8 (𝜑 → (0 ≤ (𝑁𝑀) ↔ 𝑀𝑁))
3935, 38mpbird 167 . . . . . . 7 (𝜑 → 0 ≤ (𝑁𝑀))
407zred 9393 . . . . . . . 8 (𝜑 → (𝑁𝑀) ∈ ℝ)
4128, 40addge02d 8509 . . . . . . 7 (𝜑 → (0 ≤ (𝑁𝑀) ↔ 1 ≤ ((𝑁𝑀) + 1)))
4239, 41mpbid 147 . . . . . 6 (𝜑 → 1 ≤ ((𝑁𝑀) + 1))
43 eluz2 9552 . . . . . 6 (((𝑁𝑀) + 1) ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ ((𝑁𝑀) + 1) ∈ ℤ ∧ 1 ≤ ((𝑁𝑀) + 1)))
443, 33, 42, 43syl3anbrc 1183 . . . . 5 (𝜑 → ((𝑁𝑀) + 1) ∈ (ℤ‘1))
459, 30, 32, 44geosergap 11532 . . . 4 (𝜑 → Σ𝑘 ∈ (1..^((𝑁𝑀) + 1))(𝐴𝑘) = (((𝐴↑1) − (𝐴↑((𝑁𝑀) + 1))) / (1 − 𝐴)))
469exp1d 10667 . . . . . . 7 (𝜑 → (𝐴↑1) = 𝐴)
4746, 8eqeltrd 2266 . . . . . 6 (𝜑 → (𝐴↑1) ∈ ℝ)
48 cvgratnn.gt0 . . . . . . . . 9 (𝜑 → 0 < 𝐴)
498, 48elrpd 9711 . . . . . . . 8 (𝜑𝐴 ∈ ℝ+)
5049, 33rpexpcld 10696 . . . . . . 7 (𝜑 → (𝐴↑((𝑁𝑀) + 1)) ∈ ℝ+)
5150rpred 9714 . . . . . 6 (𝜑 → (𝐴↑((𝑁𝑀) + 1)) ∈ ℝ)
5247, 51resubcld 8356 . . . . 5 (𝜑 → ((𝐴↑1) − (𝐴↑((𝑁𝑀) + 1))) ∈ ℝ)
5328, 8resubcld 8356 . . . . . 6 (𝜑 → (1 − 𝐴) ∈ ℝ)
548, 28posdifd 8507 . . . . . . 7 (𝜑 → (𝐴 < 1 ↔ 0 < (1 − 𝐴)))
5529, 54mpbid 147 . . . . . 6 (𝜑 → 0 < (1 − 𝐴))
5653, 55elrpd 9711 . . . . 5 (𝜑 → (1 − 𝐴) ∈ ℝ+)
5746oveq1d 5906 . . . . . 6 (𝜑 → ((𝐴↑1) − (𝐴↑((𝑁𝑀) + 1))) = (𝐴 − (𝐴↑((𝑁𝑀) + 1))))
588, 50ltsubrpd 9747 . . . . . 6 (𝜑 → (𝐴 − (𝐴↑((𝑁𝑀) + 1))) < 𝐴)
5957, 58eqbrtrd 4040 . . . . 5 (𝜑 → ((𝐴↑1) − (𝐴↑((𝑁𝑀) + 1))) < 𝐴)
6052, 8, 56, 59ltdiv1dd 9772 . . . 4 (𝜑 → (((𝐴↑1) − (𝐴↑((𝑁𝑀) + 1))) / (1 − 𝐴)) < (𝐴 / (1 − 𝐴)))
6145, 60eqbrtrd 4040 . . 3 (𝜑 → Σ𝑘 ∈ (1..^((𝑁𝑀) + 1))(𝐴𝑘) < (𝐴 / (1 − 𝐴)))
6227, 61eqbrtrd 4040 . 2 (𝜑 → Σ𝑘 ∈ (1...(𝑁𝑀))(𝐴𝑘) < (𝐴 / (1 − 𝐴)))
6324, 62eqbrtrrd 4042 1 (𝜑 → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀)) < (𝐴 / (1 − 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2160   class class class wbr 4018  cfv 5231  (class class class)co 5891  cc 7827  cr 7828  0cc0 7829  1c1 7830   + caddc 7832   · cmul 7834   < clt 8010  cle 8011  cmin 8146   / cdiv 8647  cn 8937  0cn0 9194  cz 9271  cuz 9546  ...cfz 10026  ..^cfzo 10160  cexp 10537  abscabs 11024  Σcsu 11379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-iinf 4602  ax-cnex 7920  ax-resscn 7921  ax-1cn 7922  ax-1re 7923  ax-icn 7924  ax-addcl 7925  ax-addrcl 7926  ax-mulcl 7927  ax-mulrcl 7928  ax-addcom 7929  ax-mulcom 7930  ax-addass 7931  ax-mulass 7932  ax-distr 7933  ax-i2m1 7934  ax-0lt1 7935  ax-1rid 7936  ax-0id 7937  ax-rnegex 7938  ax-precex 7939  ax-cnre 7940  ax-pre-ltirr 7941  ax-pre-ltwlin 7942  ax-pre-lttrn 7943  ax-pre-apti 7944  ax-pre-ltadd 7945  ax-pre-mulgt0 7946  ax-pre-mulext 7947  ax-arch 7948  ax-caucvg 7949
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4308  df-po 4311  df-iso 4312  df-iord 4381  df-on 4383  df-ilim 4384  df-suc 4386  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-isom 5240  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1st 6159  df-2nd 6160  df-recs 6324  df-irdg 6389  df-frec 6410  df-1o 6435  df-oadd 6439  df-er 6553  df-en 6759  df-dom 6760  df-fin 6761  df-pnf 8012  df-mnf 8013  df-xr 8014  df-ltxr 8015  df-le 8016  df-sub 8148  df-neg 8149  df-reap 8550  df-ap 8557  df-div 8648  df-inn 8938  df-2 8996  df-3 8997  df-4 8998  df-n0 9195  df-z 9272  df-uz 9547  df-q 9638  df-rp 9672  df-fz 10027  df-fzo 10161  df-seqfrec 10464  df-exp 10538  df-ihash 10774  df-cj 10869  df-re 10870  df-im 10871  df-rsqrt 11025  df-abs 11026  df-clim 11305  df-sumdc 11380
This theorem is referenced by:  cvgratnnlemrate  11556
  Copyright terms: Public domain W3C validator