Proof of Theorem cvgratnnlemsumlt
| Step | Hyp | Ref
 | Expression | 
| 1 |   | cvgratnn.m | 
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℕ) | 
| 2 | 1 | nnzd 9447 | 
. . . 4
⊢ (𝜑 → 𝑀 ∈ ℤ) | 
| 3 |   | 1zzd 9353 | 
. . . 4
⊢ (𝜑 → 1 ∈
ℤ) | 
| 4 |   | cvgratnn.n | 
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | 
| 5 |   | eluzelz 9610 | 
. . . . . 6
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | 
| 6 | 4, 5 | syl 14 | 
. . . . 5
⊢ (𝜑 → 𝑁 ∈ ℤ) | 
| 7 | 6, 2 | zsubcld 9453 | 
. . . 4
⊢ (𝜑 → (𝑁 − 𝑀) ∈ ℤ) | 
| 8 |   | cvgratnn.3 | 
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℝ) | 
| 9 | 8 | recnd 8055 | 
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ ℂ) | 
| 10 | 9 | adantr 276 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 𝑀))) → 𝐴 ∈ ℂ) | 
| 11 |   | elfznn 10129 | 
. . . . . . 7
⊢ (𝑘 ∈ (1...(𝑁 − 𝑀)) → 𝑘 ∈ ℕ) | 
| 12 | 11 | adantl 277 | 
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 𝑀))) → 𝑘 ∈ ℕ) | 
| 13 | 12 | nnnn0d 9302 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 𝑀))) → 𝑘 ∈ ℕ0) | 
| 14 | 10, 13 | expcld 10765 | 
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (1...(𝑁 − 𝑀))) → (𝐴↑𝑘) ∈ ℂ) | 
| 15 |   | oveq2 5930 | 
. . . 4
⊢ (𝑘 = (𝑖 − 𝑀) → (𝐴↑𝑘) = (𝐴↑(𝑖 − 𝑀))) | 
| 16 | 2, 3, 7, 14, 15 | fsumshft 11609 | 
. . 3
⊢ (𝜑 → Σ𝑘 ∈ (1...(𝑁 − 𝑀))(𝐴↑𝑘) = Σ𝑖 ∈ ((1 + 𝑀)...((𝑁 − 𝑀) + 𝑀))(𝐴↑(𝑖 − 𝑀))) | 
| 17 |   | 1cnd 8042 | 
. . . . . 6
⊢ (𝜑 → 1 ∈
ℂ) | 
| 18 | 1 | nncnd 9004 | 
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℂ) | 
| 19 | 17, 18 | addcomd 8177 | 
. . . . 5
⊢ (𝜑 → (1 + 𝑀) = (𝑀 + 1)) | 
| 20 | 6 | zcnd 9449 | 
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℂ) | 
| 21 | 20, 18 | npcand 8341 | 
. . . . 5
⊢ (𝜑 → ((𝑁 − 𝑀) + 𝑀) = 𝑁) | 
| 22 | 19, 21 | oveq12d 5940 | 
. . . 4
⊢ (𝜑 → ((1 + 𝑀)...((𝑁 − 𝑀) + 𝑀)) = ((𝑀 + 1)...𝑁)) | 
| 23 | 22 | sumeq1d 11531 | 
. . 3
⊢ (𝜑 → Σ𝑖 ∈ ((1 + 𝑀)...((𝑁 − 𝑀) + 𝑀))(𝐴↑(𝑖 − 𝑀)) = Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖 − 𝑀))) | 
| 24 | 16, 23 | eqtrd 2229 | 
. 2
⊢ (𝜑 → Σ𝑘 ∈ (1...(𝑁 − 𝑀))(𝐴↑𝑘) = Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖 − 𝑀))) | 
| 25 |   | fzval3 10280 | 
. . . . 5
⊢ ((𝑁 − 𝑀) ∈ ℤ → (1...(𝑁 − 𝑀)) = (1..^((𝑁 − 𝑀) + 1))) | 
| 26 | 25 | sumeq1d 11531 | 
. . . 4
⊢ ((𝑁 − 𝑀) ∈ ℤ → Σ𝑘 ∈ (1...(𝑁 − 𝑀))(𝐴↑𝑘) = Σ𝑘 ∈ (1..^((𝑁 − 𝑀) + 1))(𝐴↑𝑘)) | 
| 27 | 7, 26 | syl 14 | 
. . 3
⊢ (𝜑 → Σ𝑘 ∈ (1...(𝑁 − 𝑀))(𝐴↑𝑘) = Σ𝑘 ∈ (1..^((𝑁 − 𝑀) + 1))(𝐴↑𝑘)) | 
| 28 |   | 1red 8041 | 
. . . . . 6
⊢ (𝜑 → 1 ∈
ℝ) | 
| 29 |   | cvgratnn.4 | 
. . . . . 6
⊢ (𝜑 → 𝐴 < 1) | 
| 30 | 8, 28, 29 | ltapd 8665 | 
. . . . 5
⊢ (𝜑 → 𝐴 # 1) | 
| 31 |   | 1nn0 9265 | 
. . . . . 6
⊢ 1 ∈
ℕ0 | 
| 32 | 31 | a1i 9 | 
. . . . 5
⊢ (𝜑 → 1 ∈
ℕ0) | 
| 33 | 7 | peano2zd 9451 | 
. . . . . 6
⊢ (𝜑 → ((𝑁 − 𝑀) + 1) ∈ ℤ) | 
| 34 |   | eluzle 9613 | 
. . . . . . . . 9
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) | 
| 35 | 4, 34 | syl 14 | 
. . . . . . . 8
⊢ (𝜑 → 𝑀 ≤ 𝑁) | 
| 36 | 6 | zred 9448 | 
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈ ℝ) | 
| 37 | 1 | nnred 9003 | 
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ ℝ) | 
| 38 | 36, 37 | subge0d 8562 | 
. . . . . . . 8
⊢ (𝜑 → (0 ≤ (𝑁 − 𝑀) ↔ 𝑀 ≤ 𝑁)) | 
| 39 | 35, 38 | mpbird 167 | 
. . . . . . 7
⊢ (𝜑 → 0 ≤ (𝑁 − 𝑀)) | 
| 40 | 7 | zred 9448 | 
. . . . . . . 8
⊢ (𝜑 → (𝑁 − 𝑀) ∈ ℝ) | 
| 41 | 28, 40 | addge02d 8561 | 
. . . . . . 7
⊢ (𝜑 → (0 ≤ (𝑁 − 𝑀) ↔ 1 ≤ ((𝑁 − 𝑀) + 1))) | 
| 42 | 39, 41 | mpbid 147 | 
. . . . . 6
⊢ (𝜑 → 1 ≤ ((𝑁 − 𝑀) + 1)) | 
| 43 |   | eluz2 9607 | 
. . . . . 6
⊢ (((𝑁 − 𝑀) + 1) ∈
(ℤ≥‘1) ↔ (1 ∈ ℤ ∧ ((𝑁 − 𝑀) + 1) ∈ ℤ ∧ 1 ≤ ((𝑁 − 𝑀) + 1))) | 
| 44 | 3, 33, 42, 43 | syl3anbrc 1183 | 
. . . . 5
⊢ (𝜑 → ((𝑁 − 𝑀) + 1) ∈
(ℤ≥‘1)) | 
| 45 | 9, 30, 32, 44 | geosergap 11671 | 
. . . 4
⊢ (𝜑 → Σ𝑘 ∈ (1..^((𝑁 − 𝑀) + 1))(𝐴↑𝑘) = (((𝐴↑1) − (𝐴↑((𝑁 − 𝑀) + 1))) / (1 − 𝐴))) | 
| 46 | 9 | exp1d 10760 | 
. . . . . . 7
⊢ (𝜑 → (𝐴↑1) = 𝐴) | 
| 47 | 46, 8 | eqeltrd 2273 | 
. . . . . 6
⊢ (𝜑 → (𝐴↑1) ∈ ℝ) | 
| 48 |   | cvgratnn.gt0 | 
. . . . . . . . 9
⊢ (𝜑 → 0 < 𝐴) | 
| 49 | 8, 48 | elrpd 9768 | 
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈
ℝ+) | 
| 50 | 49, 33 | rpexpcld 10789 | 
. . . . . . 7
⊢ (𝜑 → (𝐴↑((𝑁 − 𝑀) + 1)) ∈
ℝ+) | 
| 51 | 50 | rpred 9771 | 
. . . . . 6
⊢ (𝜑 → (𝐴↑((𝑁 − 𝑀) + 1)) ∈ ℝ) | 
| 52 | 47, 51 | resubcld 8407 | 
. . . . 5
⊢ (𝜑 → ((𝐴↑1) − (𝐴↑((𝑁 − 𝑀) + 1))) ∈ ℝ) | 
| 53 | 28, 8 | resubcld 8407 | 
. . . . . 6
⊢ (𝜑 → (1 − 𝐴) ∈
ℝ) | 
| 54 | 8, 28 | posdifd 8559 | 
. . . . . . 7
⊢ (𝜑 → (𝐴 < 1 ↔ 0 < (1 − 𝐴))) | 
| 55 | 29, 54 | mpbid 147 | 
. . . . . 6
⊢ (𝜑 → 0 < (1 − 𝐴)) | 
| 56 | 53, 55 | elrpd 9768 | 
. . . . 5
⊢ (𝜑 → (1 − 𝐴) ∈
ℝ+) | 
| 57 | 46 | oveq1d 5937 | 
. . . . . 6
⊢ (𝜑 → ((𝐴↑1) − (𝐴↑((𝑁 − 𝑀) + 1))) = (𝐴 − (𝐴↑((𝑁 − 𝑀) + 1)))) | 
| 58 | 8, 50 | ltsubrpd 9804 | 
. . . . . 6
⊢ (𝜑 → (𝐴 − (𝐴↑((𝑁 − 𝑀) + 1))) < 𝐴) | 
| 59 | 57, 58 | eqbrtrd 4055 | 
. . . . 5
⊢ (𝜑 → ((𝐴↑1) − (𝐴↑((𝑁 − 𝑀) + 1))) < 𝐴) | 
| 60 | 52, 8, 56, 59 | ltdiv1dd 9829 | 
. . . 4
⊢ (𝜑 → (((𝐴↑1) − (𝐴↑((𝑁 − 𝑀) + 1))) / (1 − 𝐴)) < (𝐴 / (1 − 𝐴))) | 
| 61 | 45, 60 | eqbrtrd 4055 | 
. . 3
⊢ (𝜑 → Σ𝑘 ∈ (1..^((𝑁 − 𝑀) + 1))(𝐴↑𝑘) < (𝐴 / (1 − 𝐴))) | 
| 62 | 27, 61 | eqbrtrd 4055 | 
. 2
⊢ (𝜑 → Σ𝑘 ∈ (1...(𝑁 − 𝑀))(𝐴↑𝑘) < (𝐴 / (1 − 𝐴))) | 
| 63 | 24, 62 | eqbrtrrd 4057 | 
1
⊢ (𝜑 → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖 − 𝑀)) < (𝐴 / (1 − 𝐴))) |