ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemsumlt GIF version

Theorem cvgratnnlemsumlt 11810
Description: Lemma for cvgratnn 11813. (Contributed by Jim Kingdon, 23-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3 (𝜑𝐴 ∈ ℝ)
cvgratnn.4 (𝜑𝐴 < 1)
cvgratnn.gt0 (𝜑 → 0 < 𝐴)
cvgratnn.6 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
cvgratnn.7 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
cvgratnn.m (𝜑𝑀 ∈ ℕ)
cvgratnn.n (𝜑𝑁 ∈ (ℤ𝑀))
Assertion
Ref Expression
cvgratnnlemsumlt (𝜑 → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀)) < (𝐴 / (1 − 𝐴)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑁   𝜑,𝑘   𝐴,𝑖,𝑘   𝑖,𝑀,𝑘   𝑖,𝑁   𝜑,𝑖
Allowed substitution hint:   𝐹(𝑖)

Proof of Theorem cvgratnnlemsumlt
StepHypRef Expression
1 cvgratnn.m . . . . 5 (𝜑𝑀 ∈ ℕ)
21nnzd 9493 . . . 4 (𝜑𝑀 ∈ ℤ)
3 1zzd 9398 . . . 4 (𝜑 → 1 ∈ ℤ)
4 cvgratnn.n . . . . . 6 (𝜑𝑁 ∈ (ℤ𝑀))
5 eluzelz 9656 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
64, 5syl 14 . . . . 5 (𝜑𝑁 ∈ ℤ)
76, 2zsubcld 9499 . . . 4 (𝜑 → (𝑁𝑀) ∈ ℤ)
8 cvgratnn.3 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
98recnd 8100 . . . . . 6 (𝜑𝐴 ∈ ℂ)
109adantr 276 . . . . 5 ((𝜑𝑘 ∈ (1...(𝑁𝑀))) → 𝐴 ∈ ℂ)
11 elfznn 10175 . . . . . . 7 (𝑘 ∈ (1...(𝑁𝑀)) → 𝑘 ∈ ℕ)
1211adantl 277 . . . . . 6 ((𝜑𝑘 ∈ (1...(𝑁𝑀))) → 𝑘 ∈ ℕ)
1312nnnn0d 9347 . . . . 5 ((𝜑𝑘 ∈ (1...(𝑁𝑀))) → 𝑘 ∈ ℕ0)
1410, 13expcld 10816 . . . 4 ((𝜑𝑘 ∈ (1...(𝑁𝑀))) → (𝐴𝑘) ∈ ℂ)
15 oveq2 5951 . . . 4 (𝑘 = (𝑖𝑀) → (𝐴𝑘) = (𝐴↑(𝑖𝑀)))
162, 3, 7, 14, 15fsumshft 11726 . . 3 (𝜑 → Σ𝑘 ∈ (1...(𝑁𝑀))(𝐴𝑘) = Σ𝑖 ∈ ((1 + 𝑀)...((𝑁𝑀) + 𝑀))(𝐴↑(𝑖𝑀)))
17 1cnd 8087 . . . . . 6 (𝜑 → 1 ∈ ℂ)
181nncnd 9049 . . . . . 6 (𝜑𝑀 ∈ ℂ)
1917, 18addcomd 8222 . . . . 5 (𝜑 → (1 + 𝑀) = (𝑀 + 1))
206zcnd 9495 . . . . . 6 (𝜑𝑁 ∈ ℂ)
2120, 18npcand 8386 . . . . 5 (𝜑 → ((𝑁𝑀) + 𝑀) = 𝑁)
2219, 21oveq12d 5961 . . . 4 (𝜑 → ((1 + 𝑀)...((𝑁𝑀) + 𝑀)) = ((𝑀 + 1)...𝑁))
2322sumeq1d 11648 . . 3 (𝜑 → Σ𝑖 ∈ ((1 + 𝑀)...((𝑁𝑀) + 𝑀))(𝐴↑(𝑖𝑀)) = Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀)))
2416, 23eqtrd 2237 . 2 (𝜑 → Σ𝑘 ∈ (1...(𝑁𝑀))(𝐴𝑘) = Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀)))
25 fzval3 10331 . . . . 5 ((𝑁𝑀) ∈ ℤ → (1...(𝑁𝑀)) = (1..^((𝑁𝑀) + 1)))
2625sumeq1d 11648 . . . 4 ((𝑁𝑀) ∈ ℤ → Σ𝑘 ∈ (1...(𝑁𝑀))(𝐴𝑘) = Σ𝑘 ∈ (1..^((𝑁𝑀) + 1))(𝐴𝑘))
277, 26syl 14 . . 3 (𝜑 → Σ𝑘 ∈ (1...(𝑁𝑀))(𝐴𝑘) = Σ𝑘 ∈ (1..^((𝑁𝑀) + 1))(𝐴𝑘))
28 1red 8086 . . . . . 6 (𝜑 → 1 ∈ ℝ)
29 cvgratnn.4 . . . . . 6 (𝜑𝐴 < 1)
308, 28, 29ltapd 8710 . . . . 5 (𝜑𝐴 # 1)
31 1nn0 9310 . . . . . 6 1 ∈ ℕ0
3231a1i 9 . . . . 5 (𝜑 → 1 ∈ ℕ0)
337peano2zd 9497 . . . . . 6 (𝜑 → ((𝑁𝑀) + 1) ∈ ℤ)
34 eluzle 9659 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)
354, 34syl 14 . . . . . . . 8 (𝜑𝑀𝑁)
366zred 9494 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ)
371nnred 9048 . . . . . . . . 9 (𝜑𝑀 ∈ ℝ)
3836, 37subge0d 8607 . . . . . . . 8 (𝜑 → (0 ≤ (𝑁𝑀) ↔ 𝑀𝑁))
3935, 38mpbird 167 . . . . . . 7 (𝜑 → 0 ≤ (𝑁𝑀))
407zred 9494 . . . . . . . 8 (𝜑 → (𝑁𝑀) ∈ ℝ)
4128, 40addge02d 8606 . . . . . . 7 (𝜑 → (0 ≤ (𝑁𝑀) ↔ 1 ≤ ((𝑁𝑀) + 1)))
4239, 41mpbid 147 . . . . . 6 (𝜑 → 1 ≤ ((𝑁𝑀) + 1))
43 eluz2 9653 . . . . . 6 (((𝑁𝑀) + 1) ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ ((𝑁𝑀) + 1) ∈ ℤ ∧ 1 ≤ ((𝑁𝑀) + 1)))
443, 33, 42, 43syl3anbrc 1183 . . . . 5 (𝜑 → ((𝑁𝑀) + 1) ∈ (ℤ‘1))
459, 30, 32, 44geosergap 11788 . . . 4 (𝜑 → Σ𝑘 ∈ (1..^((𝑁𝑀) + 1))(𝐴𝑘) = (((𝐴↑1) − (𝐴↑((𝑁𝑀) + 1))) / (1 − 𝐴)))
469exp1d 10811 . . . . . . 7 (𝜑 → (𝐴↑1) = 𝐴)
4746, 8eqeltrd 2281 . . . . . 6 (𝜑 → (𝐴↑1) ∈ ℝ)
48 cvgratnn.gt0 . . . . . . . . 9 (𝜑 → 0 < 𝐴)
498, 48elrpd 9814 . . . . . . . 8 (𝜑𝐴 ∈ ℝ+)
5049, 33rpexpcld 10840 . . . . . . 7 (𝜑 → (𝐴↑((𝑁𝑀) + 1)) ∈ ℝ+)
5150rpred 9817 . . . . . 6 (𝜑 → (𝐴↑((𝑁𝑀) + 1)) ∈ ℝ)
5247, 51resubcld 8452 . . . . 5 (𝜑 → ((𝐴↑1) − (𝐴↑((𝑁𝑀) + 1))) ∈ ℝ)
5328, 8resubcld 8452 . . . . . 6 (𝜑 → (1 − 𝐴) ∈ ℝ)
548, 28posdifd 8604 . . . . . . 7 (𝜑 → (𝐴 < 1 ↔ 0 < (1 − 𝐴)))
5529, 54mpbid 147 . . . . . 6 (𝜑 → 0 < (1 − 𝐴))
5653, 55elrpd 9814 . . . . 5 (𝜑 → (1 − 𝐴) ∈ ℝ+)
5746oveq1d 5958 . . . . . 6 (𝜑 → ((𝐴↑1) − (𝐴↑((𝑁𝑀) + 1))) = (𝐴 − (𝐴↑((𝑁𝑀) + 1))))
588, 50ltsubrpd 9850 . . . . . 6 (𝜑 → (𝐴 − (𝐴↑((𝑁𝑀) + 1))) < 𝐴)
5957, 58eqbrtrd 4065 . . . . 5 (𝜑 → ((𝐴↑1) − (𝐴↑((𝑁𝑀) + 1))) < 𝐴)
6052, 8, 56, 59ltdiv1dd 9875 . . . 4 (𝜑 → (((𝐴↑1) − (𝐴↑((𝑁𝑀) + 1))) / (1 − 𝐴)) < (𝐴 / (1 − 𝐴)))
6145, 60eqbrtrd 4065 . . 3 (𝜑 → Σ𝑘 ∈ (1..^((𝑁𝑀) + 1))(𝐴𝑘) < (𝐴 / (1 − 𝐴)))
6227, 61eqbrtrd 4065 . 2 (𝜑 → Σ𝑘 ∈ (1...(𝑁𝑀))(𝐴𝑘) < (𝐴 / (1 − 𝐴)))
6324, 62eqbrtrrd 4067 1 (𝜑 → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀)) < (𝐴 / (1 − 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wcel 2175   class class class wbr 4043  cfv 5270  (class class class)co 5943  cc 7922  cr 7923  0cc0 7924  1c1 7925   + caddc 7927   · cmul 7929   < clt 8106  cle 8107  cmin 8242   / cdiv 8744  cn 9035  0cn0 9294  cz 9371  cuz 9647  ...cfz 10129  ..^cfzo 10263  cexp 10681  abscabs 11279  Σcsu 11635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043  ax-caucvg 8044
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-isom 5279  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-irdg 6455  df-frec 6476  df-1o 6501  df-oadd 6505  df-er 6619  df-en 6827  df-dom 6828  df-fin 6829  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-n0 9295  df-z 9372  df-uz 9648  df-q 9740  df-rp 9775  df-fz 10130  df-fzo 10264  df-seqfrec 10591  df-exp 10682  df-ihash 10919  df-cj 11124  df-re 11125  df-im 11126  df-rsqrt 11280  df-abs 11281  df-clim 11561  df-sumdc 11636
This theorem is referenced by:  cvgratnnlemrate  11812
  Copyright terms: Public domain W3C validator