ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvgratnnlemsumlt GIF version

Theorem cvgratnnlemsumlt 11693
Description: Lemma for cvgratnn 11696. (Contributed by Jim Kingdon, 23-Nov-2022.)
Hypotheses
Ref Expression
cvgratnn.3 (𝜑𝐴 ∈ ℝ)
cvgratnn.4 (𝜑𝐴 < 1)
cvgratnn.gt0 (𝜑 → 0 < 𝐴)
cvgratnn.6 ((𝜑𝑘 ∈ ℕ) → (𝐹𝑘) ∈ ℂ)
cvgratnn.7 ((𝜑𝑘 ∈ ℕ) → (abs‘(𝐹‘(𝑘 + 1))) ≤ (𝐴 · (abs‘(𝐹𝑘))))
cvgratnn.m (𝜑𝑀 ∈ ℕ)
cvgratnn.n (𝜑𝑁 ∈ (ℤ𝑀))
Assertion
Ref Expression
cvgratnnlemsumlt (𝜑 → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀)) < (𝐴 / (1 − 𝐴)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑁   𝜑,𝑘   𝐴,𝑖,𝑘   𝑖,𝑀,𝑘   𝑖,𝑁   𝜑,𝑖
Allowed substitution hint:   𝐹(𝑖)

Proof of Theorem cvgratnnlemsumlt
StepHypRef Expression
1 cvgratnn.m . . . . 5 (𝜑𝑀 ∈ ℕ)
21nnzd 9447 . . . 4 (𝜑𝑀 ∈ ℤ)
3 1zzd 9353 . . . 4 (𝜑 → 1 ∈ ℤ)
4 cvgratnn.n . . . . . 6 (𝜑𝑁 ∈ (ℤ𝑀))
5 eluzelz 9610 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
64, 5syl 14 . . . . 5 (𝜑𝑁 ∈ ℤ)
76, 2zsubcld 9453 . . . 4 (𝜑 → (𝑁𝑀) ∈ ℤ)
8 cvgratnn.3 . . . . . . 7 (𝜑𝐴 ∈ ℝ)
98recnd 8055 . . . . . 6 (𝜑𝐴 ∈ ℂ)
109adantr 276 . . . . 5 ((𝜑𝑘 ∈ (1...(𝑁𝑀))) → 𝐴 ∈ ℂ)
11 elfznn 10129 . . . . . . 7 (𝑘 ∈ (1...(𝑁𝑀)) → 𝑘 ∈ ℕ)
1211adantl 277 . . . . . 6 ((𝜑𝑘 ∈ (1...(𝑁𝑀))) → 𝑘 ∈ ℕ)
1312nnnn0d 9302 . . . . 5 ((𝜑𝑘 ∈ (1...(𝑁𝑀))) → 𝑘 ∈ ℕ0)
1410, 13expcld 10765 . . . 4 ((𝜑𝑘 ∈ (1...(𝑁𝑀))) → (𝐴𝑘) ∈ ℂ)
15 oveq2 5930 . . . 4 (𝑘 = (𝑖𝑀) → (𝐴𝑘) = (𝐴↑(𝑖𝑀)))
162, 3, 7, 14, 15fsumshft 11609 . . 3 (𝜑 → Σ𝑘 ∈ (1...(𝑁𝑀))(𝐴𝑘) = Σ𝑖 ∈ ((1 + 𝑀)...((𝑁𝑀) + 𝑀))(𝐴↑(𝑖𝑀)))
17 1cnd 8042 . . . . . 6 (𝜑 → 1 ∈ ℂ)
181nncnd 9004 . . . . . 6 (𝜑𝑀 ∈ ℂ)
1917, 18addcomd 8177 . . . . 5 (𝜑 → (1 + 𝑀) = (𝑀 + 1))
206zcnd 9449 . . . . . 6 (𝜑𝑁 ∈ ℂ)
2120, 18npcand 8341 . . . . 5 (𝜑 → ((𝑁𝑀) + 𝑀) = 𝑁)
2219, 21oveq12d 5940 . . . 4 (𝜑 → ((1 + 𝑀)...((𝑁𝑀) + 𝑀)) = ((𝑀 + 1)...𝑁))
2322sumeq1d 11531 . . 3 (𝜑 → Σ𝑖 ∈ ((1 + 𝑀)...((𝑁𝑀) + 𝑀))(𝐴↑(𝑖𝑀)) = Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀)))
2416, 23eqtrd 2229 . 2 (𝜑 → Σ𝑘 ∈ (1...(𝑁𝑀))(𝐴𝑘) = Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀)))
25 fzval3 10280 . . . . 5 ((𝑁𝑀) ∈ ℤ → (1...(𝑁𝑀)) = (1..^((𝑁𝑀) + 1)))
2625sumeq1d 11531 . . . 4 ((𝑁𝑀) ∈ ℤ → Σ𝑘 ∈ (1...(𝑁𝑀))(𝐴𝑘) = Σ𝑘 ∈ (1..^((𝑁𝑀) + 1))(𝐴𝑘))
277, 26syl 14 . . 3 (𝜑 → Σ𝑘 ∈ (1...(𝑁𝑀))(𝐴𝑘) = Σ𝑘 ∈ (1..^((𝑁𝑀) + 1))(𝐴𝑘))
28 1red 8041 . . . . . 6 (𝜑 → 1 ∈ ℝ)
29 cvgratnn.4 . . . . . 6 (𝜑𝐴 < 1)
308, 28, 29ltapd 8665 . . . . 5 (𝜑𝐴 # 1)
31 1nn0 9265 . . . . . 6 1 ∈ ℕ0
3231a1i 9 . . . . 5 (𝜑 → 1 ∈ ℕ0)
337peano2zd 9451 . . . . . 6 (𝜑 → ((𝑁𝑀) + 1) ∈ ℤ)
34 eluzle 9613 . . . . . . . . 9 (𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)
354, 34syl 14 . . . . . . . 8 (𝜑𝑀𝑁)
366zred 9448 . . . . . . . . 9 (𝜑𝑁 ∈ ℝ)
371nnred 9003 . . . . . . . . 9 (𝜑𝑀 ∈ ℝ)
3836, 37subge0d 8562 . . . . . . . 8 (𝜑 → (0 ≤ (𝑁𝑀) ↔ 𝑀𝑁))
3935, 38mpbird 167 . . . . . . 7 (𝜑 → 0 ≤ (𝑁𝑀))
407zred 9448 . . . . . . . 8 (𝜑 → (𝑁𝑀) ∈ ℝ)
4128, 40addge02d 8561 . . . . . . 7 (𝜑 → (0 ≤ (𝑁𝑀) ↔ 1 ≤ ((𝑁𝑀) + 1)))
4239, 41mpbid 147 . . . . . 6 (𝜑 → 1 ≤ ((𝑁𝑀) + 1))
43 eluz2 9607 . . . . . 6 (((𝑁𝑀) + 1) ∈ (ℤ‘1) ↔ (1 ∈ ℤ ∧ ((𝑁𝑀) + 1) ∈ ℤ ∧ 1 ≤ ((𝑁𝑀) + 1)))
443, 33, 42, 43syl3anbrc 1183 . . . . 5 (𝜑 → ((𝑁𝑀) + 1) ∈ (ℤ‘1))
459, 30, 32, 44geosergap 11671 . . . 4 (𝜑 → Σ𝑘 ∈ (1..^((𝑁𝑀) + 1))(𝐴𝑘) = (((𝐴↑1) − (𝐴↑((𝑁𝑀) + 1))) / (1 − 𝐴)))
469exp1d 10760 . . . . . . 7 (𝜑 → (𝐴↑1) = 𝐴)
4746, 8eqeltrd 2273 . . . . . 6 (𝜑 → (𝐴↑1) ∈ ℝ)
48 cvgratnn.gt0 . . . . . . . . 9 (𝜑 → 0 < 𝐴)
498, 48elrpd 9768 . . . . . . . 8 (𝜑𝐴 ∈ ℝ+)
5049, 33rpexpcld 10789 . . . . . . 7 (𝜑 → (𝐴↑((𝑁𝑀) + 1)) ∈ ℝ+)
5150rpred 9771 . . . . . 6 (𝜑 → (𝐴↑((𝑁𝑀) + 1)) ∈ ℝ)
5247, 51resubcld 8407 . . . . 5 (𝜑 → ((𝐴↑1) − (𝐴↑((𝑁𝑀) + 1))) ∈ ℝ)
5328, 8resubcld 8407 . . . . . 6 (𝜑 → (1 − 𝐴) ∈ ℝ)
548, 28posdifd 8559 . . . . . . 7 (𝜑 → (𝐴 < 1 ↔ 0 < (1 − 𝐴)))
5529, 54mpbid 147 . . . . . 6 (𝜑 → 0 < (1 − 𝐴))
5653, 55elrpd 9768 . . . . 5 (𝜑 → (1 − 𝐴) ∈ ℝ+)
5746oveq1d 5937 . . . . . 6 (𝜑 → ((𝐴↑1) − (𝐴↑((𝑁𝑀) + 1))) = (𝐴 − (𝐴↑((𝑁𝑀) + 1))))
588, 50ltsubrpd 9804 . . . . . 6 (𝜑 → (𝐴 − (𝐴↑((𝑁𝑀) + 1))) < 𝐴)
5957, 58eqbrtrd 4055 . . . . 5 (𝜑 → ((𝐴↑1) − (𝐴↑((𝑁𝑀) + 1))) < 𝐴)
6052, 8, 56, 59ltdiv1dd 9829 . . . 4 (𝜑 → (((𝐴↑1) − (𝐴↑((𝑁𝑀) + 1))) / (1 − 𝐴)) < (𝐴 / (1 − 𝐴)))
6145, 60eqbrtrd 4055 . . 3 (𝜑 → Σ𝑘 ∈ (1..^((𝑁𝑀) + 1))(𝐴𝑘) < (𝐴 / (1 − 𝐴)))
6227, 61eqbrtrd 4055 . 2 (𝜑 → Σ𝑘 ∈ (1...(𝑁𝑀))(𝐴𝑘) < (𝐴 / (1 − 𝐴)))
6324, 62eqbrtrrd 4057 1 (𝜑 → Σ𝑖 ∈ ((𝑀 + 1)...𝑁)(𝐴↑(𝑖𝑀)) < (𝐴 / (1 − 𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167   class class class wbr 4033  cfv 5258  (class class class)co 5922  cc 7877  cr 7878  0cc0 7879  1c1 7880   + caddc 7882   · cmul 7884   < clt 8061  cle 8062  cmin 8197   / cdiv 8699  cn 8990  0cn0 9249  cz 9326  cuz 9601  ...cfz 10083  ..^cfzo 10217  cexp 10630  abscabs 11162  Σcsu 11518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519
This theorem is referenced by:  cvgratnnlemrate  11695
  Copyright terms: Public domain W3C validator