![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addrsub | GIF version |
Description: Right-subtraction: Subtraction of the right summand from the result of an addition. (Contributed by BJ, 6-Jun-2019.) |
Ref | Expression |
---|---|
addlsub.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
addlsub.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
addlsub.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
Ref | Expression |
---|---|
addrsub | ⊢ (𝜑 → ((𝐴 + 𝐵) = 𝐶 ↔ 𝐵 = (𝐶 − 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addlsub.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | addlsub.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | 1, 2 | addcomd 8172 | . . 3 ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
4 | 3 | eqeq1d 2202 | . 2 ⊢ (𝜑 → ((𝐴 + 𝐵) = 𝐶 ↔ (𝐵 + 𝐴) = 𝐶)) |
5 | addlsub.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
6 | 2, 1, 5 | addlsub 8391 | . 2 ⊢ (𝜑 → ((𝐵 + 𝐴) = 𝐶 ↔ 𝐵 = (𝐶 − 𝐴))) |
7 | 4, 6 | bitrd 188 | 1 ⊢ (𝜑 → ((𝐴 + 𝐵) = 𝐶 ↔ 𝐵 = (𝐶 − 𝐴))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2164 (class class class)co 5919 ℂcc 7872 + caddc 7877 − cmin 8192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-setind 4570 ax-resscn 7966 ax-1cn 7967 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-sub 8194 |
This theorem is referenced by: subexsub 8393 iooref1o 15594 |
Copyright terms: Public domain | W3C validator |