ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqadd2mod GIF version

Theorem modqadd2mod 9684
Description: The sum of a number modulo a modulus and another number equals the sum of the two numbers modulo the modulus. (Contributed by Jim Kingdon, 24-Oct-2021.)
Assertion
Ref Expression
modqadd2mod (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → ((𝐵 + (𝐴 mod 𝑀)) mod 𝑀) = ((𝐵 + 𝐴) mod 𝑀))

Proof of Theorem modqadd2mod
StepHypRef Expression
1 qcn 9028 . . . . 5 (𝐵 ∈ ℚ → 𝐵 ∈ ℂ)
21ad2antlr 473 . . . 4 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → 𝐵 ∈ ℂ)
3 simpll 496 . . . . . 6 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → 𝐴 ∈ ℚ)
4 simprl 498 . . . . . 6 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → 𝑀 ∈ ℚ)
5 simprr 499 . . . . . 6 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → 0 < 𝑀)
63, 4, 5modqcld 9638 . . . . 5 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → (𝐴 mod 𝑀) ∈ ℚ)
7 qcn 9028 . . . . 5 ((𝐴 mod 𝑀) ∈ ℚ → (𝐴 mod 𝑀) ∈ ℂ)
86, 7syl 14 . . . 4 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → (𝐴 mod 𝑀) ∈ ℂ)
92, 8addcomd 7554 . . 3 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → (𝐵 + (𝐴 mod 𝑀)) = ((𝐴 mod 𝑀) + 𝐵))
109oveq1d 5609 . 2 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → ((𝐵 + (𝐴 mod 𝑀)) mod 𝑀) = (((𝐴 mod 𝑀) + 𝐵) mod 𝑀))
11 modqaddmod 9673 . 2 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → (((𝐴 mod 𝑀) + 𝐵) mod 𝑀) = ((𝐴 + 𝐵) mod 𝑀))
12 qcn 9028 . . . . 5 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
133, 12syl 14 . . . 4 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → 𝐴 ∈ ℂ)
1413, 2addcomd 7554 . . 3 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
1514oveq1d 5609 . 2 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → ((𝐴 + 𝐵) mod 𝑀) = ((𝐵 + 𝐴) mod 𝑀))
1610, 11, 153eqtrd 2121 1 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → ((𝐵 + (𝐴 mod 𝑀)) mod 𝑀) = ((𝐵 + 𝐴) mod 𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1287  wcel 1436   class class class wbr 3814  (class class class)co 5594  cc 7269  0cc0 7271   + caddc 7274   < clt 7443  cq 9013   mod cmo 9632
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3925  ax-pow 3977  ax-pr 4003  ax-un 4227  ax-setind 4319  ax-cnex 7357  ax-resscn 7358  ax-1cn 7359  ax-1re 7360  ax-icn 7361  ax-addcl 7362  ax-addrcl 7363  ax-mulcl 7364  ax-mulrcl 7365  ax-addcom 7366  ax-mulcom 7367  ax-addass 7368  ax-mulass 7369  ax-distr 7370  ax-i2m1 7371  ax-0lt1 7372  ax-1rid 7373  ax-0id 7374  ax-rnegex 7375  ax-precex 7376  ax-cnre 7377  ax-pre-ltirr 7378  ax-pre-ltwlin 7379  ax-pre-lttrn 7380  ax-pre-apti 7381  ax-pre-ltadd 7382  ax-pre-mulgt0 7383  ax-pre-mulext 7384  ax-arch 7385
This theorem depends on definitions:  df-bi 115  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rmo 2363  df-rab 2364  df-v 2616  df-sbc 2829  df-csb 2922  df-dif 2988  df-un 2990  df-in 2992  df-ss 2999  df-pw 3411  df-sn 3431  df-pr 3432  df-op 3434  df-uni 3631  df-int 3666  df-iun 3709  df-br 3815  df-opab 3869  df-mpt 3870  df-id 4087  df-po 4090  df-iso 4091  df-xp 4410  df-rel 4411  df-cnv 4412  df-co 4413  df-dm 4414  df-rn 4415  df-res 4416  df-ima 4417  df-iota 4937  df-fun 4974  df-fn 4975  df-f 4976  df-fv 4980  df-riota 5550  df-ov 5597  df-oprab 5598  df-mpt2 5599  df-1st 5849  df-2nd 5850  df-pnf 7445  df-mnf 7446  df-xr 7447  df-ltxr 7448  df-le 7449  df-sub 7576  df-neg 7577  df-reap 7970  df-ap 7977  df-div 8056  df-inn 8335  df-n0 8584  df-z 8661  df-q 9014  df-rp 9044  df-fl 9580  df-mod 9633
This theorem is referenced by:  modaddmodup  9697  modaddmodlo  9698
  Copyright terms: Public domain W3C validator