Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  absefi GIF version

Theorem absefi 11272
 Description: The absolute value of the exponential of an imaginary number is one. Equation 48 of [Rudin] p. 167. (Contributed by Jason Orendorff, 9-Feb-2007.)
Assertion
Ref Expression
absefi (𝐴 ∈ ℝ → (abs‘(exp‘(i · 𝐴))) = 1)

Proof of Theorem absefi
StepHypRef Expression
1 recn 7625 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 efival 11237 . . . 4 (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴))))
31, 2syl 14 . . 3 (𝐴 ∈ ℝ → (exp‘(i · 𝐴)) = ((cos‘𝐴) + (i · (sin‘𝐴))))
43fveq2d 5357 . 2 (𝐴 ∈ ℝ → (abs‘(exp‘(i · 𝐴))) = (abs‘((cos‘𝐴) + (i · (sin‘𝐴)))))
5 recoscl 11226 . . . 4 (𝐴 ∈ ℝ → (cos‘𝐴) ∈ ℝ)
6 resincl 11225 . . . 4 (𝐴 ∈ ℝ → (sin‘𝐴) ∈ ℝ)
7 absreim 10680 . . . 4 (((cos‘𝐴) ∈ ℝ ∧ (sin‘𝐴) ∈ ℝ) → (abs‘((cos‘𝐴) + (i · (sin‘𝐴)))) = (√‘(((cos‘𝐴)↑2) + ((sin‘𝐴)↑2))))
85, 6, 7syl2anc 406 . . 3 (𝐴 ∈ ℝ → (abs‘((cos‘𝐴) + (i · (sin‘𝐴)))) = (√‘(((cos‘𝐴)↑2) + ((sin‘𝐴)↑2))))
95resqcld 10291 . . . . . . . 8 (𝐴 ∈ ℝ → ((cos‘𝐴)↑2) ∈ ℝ)
109recnd 7666 . . . . . . 7 (𝐴 ∈ ℝ → ((cos‘𝐴)↑2) ∈ ℂ)
116resqcld 10291 . . . . . . . 8 (𝐴 ∈ ℝ → ((sin‘𝐴)↑2) ∈ ℝ)
1211recnd 7666 . . . . . . 7 (𝐴 ∈ ℝ → ((sin‘𝐴)↑2) ∈ ℂ)
1310, 12addcomd 7784 . . . . . 6 (𝐴 ∈ ℝ → (((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) = (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)))
14 sincossq 11253 . . . . . . 7 (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1)
151, 14syl 14 . . . . . 6 (𝐴 ∈ ℝ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1)
1613, 15eqtrd 2132 . . . . 5 (𝐴 ∈ ℝ → (((cos‘𝐴)↑2) + ((sin‘𝐴)↑2)) = 1)
1716fveq2d 5357 . . . 4 (𝐴 ∈ ℝ → (√‘(((cos‘𝐴)↑2) + ((sin‘𝐴)↑2))) = (√‘1))
18 sqrt1 10658 . . . 4 (√‘1) = 1
1917, 18syl6eq 2148 . . 3 (𝐴 ∈ ℝ → (√‘(((cos‘𝐴)↑2) + ((sin‘𝐴)↑2))) = 1)
208, 19eqtrd 2132 . 2 (𝐴 ∈ ℝ → (abs‘((cos‘𝐴) + (i · (sin‘𝐴)))) = 1)
214, 20eqtrd 2132 1 (𝐴 ∈ ℝ → (abs‘(exp‘(i · 𝐴))) = 1)
 Colors of variables: wff set class Syntax hints:   → wi 4   = wceq 1299   ∈ wcel 1448  ‘cfv 5059  (class class class)co 5706  ℂcc 7498  ℝcr 7499  1c1 7501  ici 7502   + caddc 7503   · cmul 7505  2c2 8629  ↑cexp 10133  √csqrt 10608  abscabs 10609  expce 11146  sincsin 11148  cosccos 11149 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-mulrcl 7594  ax-addcom 7595  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-1rid 7602  ax-0id 7603  ax-rnegex 7604  ax-precex 7605  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611  ax-pre-mulgt0 7612  ax-pre-mulext 7613  ax-arch 7614  ax-caucvg 7615 This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rmo 2383  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-if 3422  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-disj 3853  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-po 4156  df-iso 4157  df-iord 4226  df-on 4228  df-ilim 4229  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-isom 5068  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-irdg 6197  df-frec 6218  df-1o 6243  df-oadd 6247  df-er 6359  df-en 6565  df-dom 6566  df-fin 6567  df-sup 6786  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-reap 8203  df-ap 8210  df-div 8294  df-inn 8579  df-2 8637  df-3 8638  df-4 8639  df-n0 8830  df-z 8907  df-uz 9177  df-q 9262  df-rp 9292  df-ico 9518  df-fz 9632  df-fzo 9761  df-seqfrec 10060  df-exp 10134  df-fac 10313  df-bc 10335  df-ihash 10363  df-cj 10455  df-re 10456  df-im 10457  df-rsqrt 10610  df-abs 10611  df-clim 10887  df-sumdc 10962  df-ef 11152  df-sin 11154  df-cos 11155 This theorem is referenced by:  absef  11273  efieq1re  11275
 Copyright terms: Public domain W3C validator