ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqaddmulmod GIF version

Theorem modqaddmulmod 10621
Description: The sum of a rational number and the product of a second rational number modulo a modulus and an integer equals the sum of the rational number and the product of the other rational number and the integer modulo the modulus. (Contributed by Jim Kingdon, 26-Oct-2021.)
Assertion
Ref Expression
modqaddmulmod (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℤ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → ((𝐴 + ((𝐵 mod 𝑀) · 𝐶)) mod 𝑀) = ((𝐴 + (𝐵 · 𝐶)) mod 𝑀))

Proof of Theorem modqaddmulmod
StepHypRef Expression
1 simpl1 1024 . . . . 5 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℤ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → 𝐴 ∈ ℚ)
2 qcn 9837 . . . . 5 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
31, 2syl 14 . . . 4 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℤ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → 𝐴 ∈ ℂ)
4 simpl2 1025 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℤ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → 𝐵 ∈ ℚ)
5 simprl 529 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℤ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → 𝑀 ∈ ℚ)
6 simprr 531 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℤ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → 0 < 𝑀)
74, 5, 6modqcld 10558 . . . . . 6 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℤ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → (𝐵 mod 𝑀) ∈ ℚ)
8 simpl3 1026 . . . . . . 7 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℤ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → 𝐶 ∈ ℤ)
9 zq 9829 . . . . . . 7 (𝐶 ∈ ℤ → 𝐶 ∈ ℚ)
108, 9syl 14 . . . . . 6 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℤ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → 𝐶 ∈ ℚ)
11 qmulcl 9840 . . . . . 6 (((𝐵 mod 𝑀) ∈ ℚ ∧ 𝐶 ∈ ℚ) → ((𝐵 mod 𝑀) · 𝐶) ∈ ℚ)
127, 10, 11syl2anc 411 . . . . 5 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℤ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → ((𝐵 mod 𝑀) · 𝐶) ∈ ℚ)
13 qcn 9837 . . . . 5 (((𝐵 mod 𝑀) · 𝐶) ∈ ℚ → ((𝐵 mod 𝑀) · 𝐶) ∈ ℂ)
1412, 13syl 14 . . . 4 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℤ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → ((𝐵 mod 𝑀) · 𝐶) ∈ ℂ)
153, 14addcomd 8305 . . 3 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℤ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → (𝐴 + ((𝐵 mod 𝑀) · 𝐶)) = (((𝐵 mod 𝑀) · 𝐶) + 𝐴))
1615oveq1d 6022 . 2 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℤ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → ((𝐴 + ((𝐵 mod 𝑀) · 𝐶)) mod 𝑀) = ((((𝐵 mod 𝑀) · 𝐶) + 𝐴) mod 𝑀))
1793ad2ant3 1044 . . . . 5 ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℚ)
1817adantr 276 . . . 4 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℤ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → 𝐶 ∈ ℚ)
197, 18, 11syl2anc 411 . . 3 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℤ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → ((𝐵 mod 𝑀) · 𝐶) ∈ ℚ)
20 qmulcl 9840 . . . . 5 ((𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ) → (𝐵 · 𝐶) ∈ ℚ)
214, 18, 20syl2anc 411 . . . 4 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℤ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → (𝐵 · 𝐶) ∈ ℚ)
2221, 5, 6modqcld 10558 . . 3 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℤ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → ((𝐵 · 𝐶) mod 𝑀) ∈ ℚ)
23 modqmulmod 10619 . . . . 5 (((𝐵 ∈ ℚ ∧ 𝐶 ∈ ℤ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → (((𝐵 mod 𝑀) · 𝐶) mod 𝑀) = ((𝐵 · 𝐶) mod 𝑀))
24233adantl1 1177 . . . 4 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℤ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → (((𝐵 mod 𝑀) · 𝐶) mod 𝑀) = ((𝐵 · 𝐶) mod 𝑀))
25 modqabs2 10588 . . . . 5 (((𝐵 · 𝐶) ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → (((𝐵 · 𝐶) mod 𝑀) mod 𝑀) = ((𝐵 · 𝐶) mod 𝑀))
2621, 5, 6, 25syl3anc 1271 . . . 4 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℤ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → (((𝐵 · 𝐶) mod 𝑀) mod 𝑀) = ((𝐵 · 𝐶) mod 𝑀))
2724, 26eqtr4d 2265 . . 3 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℤ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → (((𝐵 mod 𝑀) · 𝐶) mod 𝑀) = (((𝐵 · 𝐶) mod 𝑀) mod 𝑀))
2819, 22, 1, 5, 6, 27modqadd1 10591 . 2 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℤ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → ((((𝐵 mod 𝑀) · 𝐶) + 𝐴) mod 𝑀) = ((((𝐵 · 𝐶) mod 𝑀) + 𝐴) mod 𝑀))
29 modqaddmod 10593 . . . 4 ((((𝐵 · 𝐶) ∈ ℚ ∧ 𝐴 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → ((((𝐵 · 𝐶) mod 𝑀) + 𝐴) mod 𝑀) = (((𝐵 · 𝐶) + 𝐴) mod 𝑀))
3021, 1, 5, 6, 29syl22anc 1272 . . 3 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℤ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → ((((𝐵 · 𝐶) mod 𝑀) + 𝐴) mod 𝑀) = (((𝐵 · 𝐶) + 𝐴) mod 𝑀))
31 qcn 9837 . . . . . 6 ((𝐵 · 𝐶) ∈ ℚ → (𝐵 · 𝐶) ∈ ℂ)
3221, 31syl 14 . . . . 5 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℤ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → (𝐵 · 𝐶) ∈ ℂ)
3332, 3addcomd 8305 . . . 4 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℤ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → ((𝐵 · 𝐶) + 𝐴) = (𝐴 + (𝐵 · 𝐶)))
3433oveq1d 6022 . . 3 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℤ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → (((𝐵 · 𝐶) + 𝐴) mod 𝑀) = ((𝐴 + (𝐵 · 𝐶)) mod 𝑀))
3530, 34eqtrd 2262 . 2 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℤ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → ((((𝐵 · 𝐶) mod 𝑀) + 𝐴) mod 𝑀) = ((𝐴 + (𝐵 · 𝐶)) mod 𝑀))
3616, 28, 353eqtrd 2266 1 (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℤ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → ((𝐴 + ((𝐵 mod 𝑀) · 𝐶)) mod 𝑀) = ((𝐴 + (𝐵 · 𝐶)) mod 𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 1002   = wceq 1395  wcel 2200   class class class wbr 4083  (class class class)co 6007  cc 8005  0cc0 8007   + caddc 8010   · cmul 8012   < clt 8189  cz 9454  cq 9822   mod cmo 10552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-n0 9378  df-z 9455  df-q 9823  df-rp 9858  df-fl 10498  df-mod 10553
This theorem is referenced by:  modprm0  12785  modprmn0modprm0  12787
  Copyright terms: Public domain W3C validator