ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  npcan GIF version

Theorem npcan 8235
Description: Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
npcan ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵) + 𝐵) = 𝐴)

Proof of Theorem npcan
StepHypRef Expression
1 subcl 8225 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐵) ∈ ℂ)
2 simpr 110 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
31, 2addcomd 8177 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵) + 𝐵) = (𝐵 + (𝐴𝐵)))
4 pncan3 8234 . . 3 ((𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (𝐵 + (𝐴𝐵)) = 𝐴)
54ancoms 268 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 + (𝐴𝐵)) = 𝐴)
63, 5eqtrd 2229 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴𝐵) + 𝐵) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  (class class class)co 5922  cc 7877   + caddc 7882  cmin 8197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-setind 4573  ax-resscn 7971  ax-1cn 7972  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-sub 8199
This theorem is referenced by:  addsubass  8236  npncan  8247  nppcan  8248  nnpcan  8249  subcan2  8251  nnncan  8261  npcand  8341  nn1suc  9009  zlem1lt  9382  zltlem1  9383  peano5uzti  9434  nummac  9501  uzp1  9635  peano2uzr  9659  fz01en  10128  fzsuc2  10154  fseq1m1p1  10170  fzoss2  10248  fzoaddel2  10269  fzosplitsnm1  10285  fzosplitprm1  10310  modfzo0difsn  10487  seq3m1  10565  monoord2  10578  ser3mono  10579  seqf1oglem1  10611  seqf1oglem2  10612  expm1t  10659  expubnd  10688  bcm1k  10852  bcn2  10856  hashfzo  10914  seq3coll  10934  shftlem  10981  shftfvalg  10983  shftfval  10986  iserex  11504  serf0  11517  fsumm1  11581  mptfzshft  11607  binomlem  11648  binom1dif  11652  isumsplit  11656  dvdssub2  12000  4sqlem19  12578  perfect1  15234  lgsquad2lem1  15322
  Copyright terms: Public domain W3C validator