Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > qavgle | GIF version |
Description: The average of two rational numbers is less than or equal to at least one of them. (Contributed by Jim Kingdon, 3-Nov-2021.) |
Ref | Expression |
---|---|
qavgle | ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (((𝐴 + 𝐵) / 2) ≤ 𝐴 ∨ ((𝐴 + 𝐵) / 2) ≤ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qletric 10179 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 ≤ 𝐵 ∨ 𝐵 ≤ 𝐴)) | |
2 | 1 | orcomd 719 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐵 ≤ 𝐴 ∨ 𝐴 ≤ 𝐵)) |
3 | qre 9563 | . . . . . 6 ⊢ (𝐵 ∈ ℚ → 𝐵 ∈ ℝ) | |
4 | 3 | adantl 275 | . . . . 5 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → 𝐵 ∈ ℝ) |
5 | qre 9563 | . . . . . 6 ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℝ) | |
6 | 5 | adantr 274 | . . . . 5 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → 𝐴 ∈ ℝ) |
7 | avgle2 9098 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 ≤ 𝐴 ↔ ((𝐵 + 𝐴) / 2) ≤ 𝐴)) | |
8 | 4, 6, 7 | syl2anc 409 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐵 ≤ 𝐴 ↔ ((𝐵 + 𝐴) / 2) ≤ 𝐴)) |
9 | qcn 9572 | . . . . . . . 8 ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℂ) | |
10 | 9 | adantr 274 | . . . . . . 7 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → 𝐴 ∈ ℂ) |
11 | qcn 9572 | . . . . . . . 8 ⊢ (𝐵 ∈ ℚ → 𝐵 ∈ ℂ) | |
12 | 11 | adantl 275 | . . . . . . 7 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → 𝐵 ∈ ℂ) |
13 | 10, 12 | addcomd 8049 | . . . . . 6 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
14 | 13 | oveq1d 5857 | . . . . 5 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → ((𝐴 + 𝐵) / 2) = ((𝐵 + 𝐴) / 2)) |
15 | 14 | breq1d 3992 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (((𝐴 + 𝐵) / 2) ≤ 𝐴 ↔ ((𝐵 + 𝐴) / 2) ≤ 𝐴)) |
16 | 8, 15 | bitr4d 190 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐵 ≤ 𝐴 ↔ ((𝐴 + 𝐵) / 2) ≤ 𝐴)) |
17 | avgle2 9098 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ((𝐴 + 𝐵) / 2) ≤ 𝐵)) | |
18 | 6, 4, 17 | syl2anc 409 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (𝐴 ≤ 𝐵 ↔ ((𝐴 + 𝐵) / 2) ≤ 𝐵)) |
19 | 16, 18 | orbi12d 783 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → ((𝐵 ≤ 𝐴 ∨ 𝐴 ≤ 𝐵) ↔ (((𝐴 + 𝐵) / 2) ≤ 𝐴 ∨ ((𝐴 + 𝐵) / 2) ≤ 𝐵))) |
20 | 2, 19 | mpbid 146 | 1 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) → (((𝐴 + 𝐵) / 2) ≤ 𝐴 ∨ ((𝐴 + 𝐵) / 2) ≤ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 698 ∈ wcel 2136 class class class wbr 3982 (class class class)co 5842 ℂcc 7751 ℝcr 7752 + caddc 7756 ≤ cle 7934 / cdiv 8568 2c2 8908 ℚcq 9557 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-po 4274 df-iso 4275 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-n0 9115 df-z 9192 df-q 9558 df-rp 9590 |
This theorem is referenced by: facavg 10659 |
Copyright terms: Public domain | W3C validator |