| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pncan | GIF version | ||
| Description: Cancellation law for subtraction. (Contributed by NM, 10-May-2004.) (Revised by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| pncan | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
| 2 | simpl 109 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ) | |
| 3 | 1, 2 | addcomd 8238 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 + 𝐴) = (𝐴 + 𝐵)) |
| 4 | addcl 8065 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | |
| 5 | subadd 8290 | . . 3 ⊢ (((𝐴 + 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (((𝐴 + 𝐵) − 𝐵) = 𝐴 ↔ (𝐵 + 𝐴) = (𝐴 + 𝐵))) | |
| 6 | 4, 1, 2, 5 | syl3anc 1250 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (((𝐴 + 𝐵) − 𝐵) = 𝐴 ↔ (𝐵 + 𝐴) = (𝐴 + 𝐵))) |
| 7 | 3, 6 | mpbird 167 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 (class class class)co 5956 ℂcc 7938 + caddc 7943 − cmin 8258 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-setind 4592 ax-resscn 8032 ax-1cn 8033 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-addcom 8040 ax-addass 8042 ax-distr 8044 ax-i2m1 8045 ax-0id 8048 ax-rnegex 8049 ax-cnre 8051 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-br 4051 df-opab 4113 df-id 4347 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-iota 5240 df-fun 5281 df-fv 5287 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-sub 8260 |
| This theorem is referenced by: pncan2 8294 addsubass 8297 pncan3oi 8303 subid1 8307 nppcan2 8318 pncand 8399 nn1m1nn 9069 nnsub 9090 elnn0nn 9352 zrevaddcl 9438 nzadd 9440 elz2 9459 qrevaddcl 9780 irradd 9782 fzrev3 10224 elfzp1b 10234 fzrevral3 10244 fzval3 10350 seqf1oglem1 10681 seqf1oglem2 10682 subsq2 10809 bcp1nk 10924 bcp1m1 10927 bcpasc 10928 wrdind 11193 wrd2ind 11194 shftlem 11197 shftval5 11210 fsump1 11801 mptfzshft 11823 telfsumo 11847 fsumparts 11851 bcxmas 11870 isum1p 11873 geolim 11892 mertenslem2 11917 mertensabs 11918 eftlub 12071 effsumlt 12073 eirraplem 12158 dvdsadd 12217 prmind2 12512 fldivp1 12741 prmpwdvds 12748 pockthlem 12749 4sqlem11 12794 dvexp 15253 plyaddlem1 15289 plymullem1 15290 dvply1 15307 abssinper 15388 perfectlem1 15541 perfectlem2 15542 perfect 15543 lgsvalmod 15566 lgseisen 15621 lgsquadlem1 15624 lgsquad2lem1 15628 2sqlem10 15672 |
| Copyright terms: Public domain | W3C validator |