| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bcn2m1 | GIF version | ||
| Description: Compute the binomial coefficient "𝑁 choose 2 " from "(𝑁 − 1) choose 2 ": (N-1) + ( (N-1) 2 ) = ( N 2 ). (Contributed by Alexander van der Vekens, 7-Jan-2018.) |
| Ref | Expression |
|---|---|
| bcn2m1 | ⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) + ((𝑁 − 1)C2)) = (𝑁C2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnm1nn0 9406 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) | |
| 2 | 1 | nn0cnd 9420 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℂ) |
| 3 | 2z 9470 | . . . . 5 ⊢ 2 ∈ ℤ | |
| 4 | bccl 10984 | . . . . 5 ⊢ (((𝑁 − 1) ∈ ℕ0 ∧ 2 ∈ ℤ) → ((𝑁 − 1)C2) ∈ ℕ0) | |
| 5 | 1, 3, 4 | sylancl 413 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((𝑁 − 1)C2) ∈ ℕ0) |
| 6 | 5 | nn0cnd 9420 | . . 3 ⊢ (𝑁 ∈ ℕ → ((𝑁 − 1)C2) ∈ ℂ) |
| 7 | 2, 6 | addcomd 8293 | . 2 ⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) + ((𝑁 − 1)C2)) = (((𝑁 − 1)C2) + (𝑁 − 1))) |
| 8 | bcn1 10975 | . . . . . 6 ⊢ ((𝑁 − 1) ∈ ℕ0 → ((𝑁 − 1)C1) = (𝑁 − 1)) | |
| 9 | 8 | eqcomd 2235 | . . . . 5 ⊢ ((𝑁 − 1) ∈ ℕ0 → (𝑁 − 1) = ((𝑁 − 1)C1)) |
| 10 | 1, 9 | syl 14 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) = ((𝑁 − 1)C1)) |
| 11 | 1e2m1 9225 | . . . . . 6 ⊢ 1 = (2 − 1) | |
| 12 | 11 | a1i 9 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 1 = (2 − 1)) |
| 13 | 12 | oveq2d 6016 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((𝑁 − 1)C1) = ((𝑁 − 1)C(2 − 1))) |
| 14 | 10, 13 | eqtrd 2262 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) = ((𝑁 − 1)C(2 − 1))) |
| 15 | 14 | oveq2d 6016 | . 2 ⊢ (𝑁 ∈ ℕ → (((𝑁 − 1)C2) + (𝑁 − 1)) = (((𝑁 − 1)C2) + ((𝑁 − 1)C(2 − 1)))) |
| 16 | bcpasc 10983 | . . . 4 ⊢ (((𝑁 − 1) ∈ ℕ0 ∧ 2 ∈ ℤ) → (((𝑁 − 1)C2) + ((𝑁 − 1)C(2 − 1))) = (((𝑁 − 1) + 1)C2)) | |
| 17 | 1, 3, 16 | sylancl 413 | . . 3 ⊢ (𝑁 ∈ ℕ → (((𝑁 − 1)C2) + ((𝑁 − 1)C(2 − 1))) = (((𝑁 − 1) + 1)C2)) |
| 18 | nncn 9114 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
| 19 | 1cnd 8158 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 1 ∈ ℂ) | |
| 20 | 18, 19 | npcand 8457 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁) |
| 21 | 20 | oveq1d 6015 | . . 3 ⊢ (𝑁 ∈ ℕ → (((𝑁 − 1) + 1)C2) = (𝑁C2)) |
| 22 | 17, 21 | eqtrd 2262 | . 2 ⊢ (𝑁 ∈ ℕ → (((𝑁 − 1)C2) + ((𝑁 − 1)C(2 − 1))) = (𝑁C2)) |
| 23 | 7, 15, 22 | 3eqtrd 2266 | 1 ⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) + ((𝑁 − 1)C2)) = (𝑁C2)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 (class class class)co 6000 1c1 7996 + caddc 7998 − cmin 8313 ℕcn 9106 2c2 9157 ℕ0cn0 9365 ℤcz 9442 Ccbc 10964 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-frec 6535 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-2 9165 df-n0 9366 df-z 9443 df-uz 9719 df-q 9811 df-rp 9846 df-fz 10201 df-seqfrec 10665 df-fac 10943 df-bc 10965 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |