| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bcn2m1 | GIF version | ||
| Description: Compute the binomial coefficient "𝑁 choose 2 " from "(𝑁 − 1) choose 2 ": (N-1) + ( (N-1) 2 ) = ( N 2 ). (Contributed by Alexander van der Vekens, 7-Jan-2018.) |
| Ref | Expression |
|---|---|
| bcn2m1 | ⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) + ((𝑁 − 1)C2)) = (𝑁C2)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnm1nn0 9318 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) | |
| 2 | 1 | nn0cnd 9332 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℂ) |
| 3 | 2z 9382 | . . . . 5 ⊢ 2 ∈ ℤ | |
| 4 | bccl 10893 | . . . . 5 ⊢ (((𝑁 − 1) ∈ ℕ0 ∧ 2 ∈ ℤ) → ((𝑁 − 1)C2) ∈ ℕ0) | |
| 5 | 1, 3, 4 | sylancl 413 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((𝑁 − 1)C2) ∈ ℕ0) |
| 6 | 5 | nn0cnd 9332 | . . 3 ⊢ (𝑁 ∈ ℕ → ((𝑁 − 1)C2) ∈ ℂ) |
| 7 | 2, 6 | addcomd 8205 | . 2 ⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) + ((𝑁 − 1)C2)) = (((𝑁 − 1)C2) + (𝑁 − 1))) |
| 8 | bcn1 10884 | . . . . . 6 ⊢ ((𝑁 − 1) ∈ ℕ0 → ((𝑁 − 1)C1) = (𝑁 − 1)) | |
| 9 | 8 | eqcomd 2210 | . . . . 5 ⊢ ((𝑁 − 1) ∈ ℕ0 → (𝑁 − 1) = ((𝑁 − 1)C1)) |
| 10 | 1, 9 | syl 14 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) = ((𝑁 − 1)C1)) |
| 11 | 1e2m1 9137 | . . . . . 6 ⊢ 1 = (2 − 1) | |
| 12 | 11 | a1i 9 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 1 = (2 − 1)) |
| 13 | 12 | oveq2d 5950 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((𝑁 − 1)C1) = ((𝑁 − 1)C(2 − 1))) |
| 14 | 10, 13 | eqtrd 2237 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) = ((𝑁 − 1)C(2 − 1))) |
| 15 | 14 | oveq2d 5950 | . 2 ⊢ (𝑁 ∈ ℕ → (((𝑁 − 1)C2) + (𝑁 − 1)) = (((𝑁 − 1)C2) + ((𝑁 − 1)C(2 − 1)))) |
| 16 | bcpasc 10892 | . . . 4 ⊢ (((𝑁 − 1) ∈ ℕ0 ∧ 2 ∈ ℤ) → (((𝑁 − 1)C2) + ((𝑁 − 1)C(2 − 1))) = (((𝑁 − 1) + 1)C2)) | |
| 17 | 1, 3, 16 | sylancl 413 | . . 3 ⊢ (𝑁 ∈ ℕ → (((𝑁 − 1)C2) + ((𝑁 − 1)C(2 − 1))) = (((𝑁 − 1) + 1)C2)) |
| 18 | nncn 9026 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
| 19 | 1cnd 8070 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 1 ∈ ℂ) | |
| 20 | 18, 19 | npcand 8369 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁) |
| 21 | 20 | oveq1d 5949 | . . 3 ⊢ (𝑁 ∈ ℕ → (((𝑁 − 1) + 1)C2) = (𝑁C2)) |
| 22 | 17, 21 | eqtrd 2237 | . 2 ⊢ (𝑁 ∈ ℕ → (((𝑁 − 1)C2) + ((𝑁 − 1)C(2 − 1))) = (𝑁C2)) |
| 23 | 7, 15, 22 | 3eqtrd 2241 | 1 ⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) + ((𝑁 − 1)C2)) = (𝑁C2)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 (class class class)co 5934 1c1 7908 + caddc 7910 − cmin 8225 ℕcn 9018 2c2 9069 ℕ0cn0 9277 ℤcz 9354 Ccbc 10873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-iinf 4634 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-mulrcl 8006 ax-addcom 8007 ax-mulcom 8008 ax-addass 8009 ax-mulass 8010 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-1rid 8014 ax-0id 8015 ax-rnegex 8016 ax-precex 8017 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-apti 8022 ax-pre-ltadd 8023 ax-pre-mulgt0 8024 ax-pre-mulext 8025 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4338 df-po 4341 df-iso 4342 df-iord 4411 df-on 4413 df-ilim 4414 df-suc 4416 df-iom 4637 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1st 6216 df-2nd 6217 df-recs 6381 df-frec 6467 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-reap 8630 df-ap 8637 df-div 8728 df-inn 9019 df-2 9077 df-n0 9278 df-z 9355 df-uz 9631 df-q 9723 df-rp 9758 df-fz 10113 df-seqfrec 10574 df-fac 10852 df-bc 10874 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |