ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bcn2m1 GIF version

Theorem bcn2m1 10895
Description: Compute the binomial coefficient "𝑁 choose 2 " from "(𝑁 − 1) choose 2 ": (N-1) + ( (N-1) 2 ) = ( N 2 ). (Contributed by Alexander van der Vekens, 7-Jan-2018.)
Assertion
Ref Expression
bcn2m1 (𝑁 ∈ ℕ → ((𝑁 − 1) + ((𝑁 − 1)C2)) = (𝑁C2))

Proof of Theorem bcn2m1
StepHypRef Expression
1 nnm1nn0 9318 . . . 4 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
21nn0cnd 9332 . . 3 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℂ)
3 2z 9382 . . . . 5 2 ∈ ℤ
4 bccl 10893 . . . . 5 (((𝑁 − 1) ∈ ℕ0 ∧ 2 ∈ ℤ) → ((𝑁 − 1)C2) ∈ ℕ0)
51, 3, 4sylancl 413 . . . 4 (𝑁 ∈ ℕ → ((𝑁 − 1)C2) ∈ ℕ0)
65nn0cnd 9332 . . 3 (𝑁 ∈ ℕ → ((𝑁 − 1)C2) ∈ ℂ)
72, 6addcomd 8205 . 2 (𝑁 ∈ ℕ → ((𝑁 − 1) + ((𝑁 − 1)C2)) = (((𝑁 − 1)C2) + (𝑁 − 1)))
8 bcn1 10884 . . . . . 6 ((𝑁 − 1) ∈ ℕ0 → ((𝑁 − 1)C1) = (𝑁 − 1))
98eqcomd 2210 . . . . 5 ((𝑁 − 1) ∈ ℕ0 → (𝑁 − 1) = ((𝑁 − 1)C1))
101, 9syl 14 . . . 4 (𝑁 ∈ ℕ → (𝑁 − 1) = ((𝑁 − 1)C1))
11 1e2m1 9137 . . . . . 6 1 = (2 − 1)
1211a1i 9 . . . . 5 (𝑁 ∈ ℕ → 1 = (2 − 1))
1312oveq2d 5950 . . . 4 (𝑁 ∈ ℕ → ((𝑁 − 1)C1) = ((𝑁 − 1)C(2 − 1)))
1410, 13eqtrd 2237 . . 3 (𝑁 ∈ ℕ → (𝑁 − 1) = ((𝑁 − 1)C(2 − 1)))
1514oveq2d 5950 . 2 (𝑁 ∈ ℕ → (((𝑁 − 1)C2) + (𝑁 − 1)) = (((𝑁 − 1)C2) + ((𝑁 − 1)C(2 − 1))))
16 bcpasc 10892 . . . 4 (((𝑁 − 1) ∈ ℕ0 ∧ 2 ∈ ℤ) → (((𝑁 − 1)C2) + ((𝑁 − 1)C(2 − 1))) = (((𝑁 − 1) + 1)C2))
171, 3, 16sylancl 413 . . 3 (𝑁 ∈ ℕ → (((𝑁 − 1)C2) + ((𝑁 − 1)C(2 − 1))) = (((𝑁 − 1) + 1)C2))
18 nncn 9026 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
19 1cnd 8070 . . . . 5 (𝑁 ∈ ℕ → 1 ∈ ℂ)
2018, 19npcand 8369 . . . 4 (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁)
2120oveq1d 5949 . . 3 (𝑁 ∈ ℕ → (((𝑁 − 1) + 1)C2) = (𝑁C2))
2217, 21eqtrd 2237 . 2 (𝑁 ∈ ℕ → (((𝑁 − 1)C2) + ((𝑁 − 1)C(2 − 1))) = (𝑁C2))
237, 15, 223eqtrd 2241 1 (𝑁 ∈ ℕ → ((𝑁 − 1) + ((𝑁 − 1)C2)) = (𝑁C2))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1372  wcel 2175  (class class class)co 5934  1c1 7908   + caddc 7910  cmin 8225  cn 9018  2c2 9069  0cn0 9277  cz 9354  Ccbc 10873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-mulrcl 8006  ax-addcom 8007  ax-mulcom 8008  ax-addass 8009  ax-mulass 8010  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-1rid 8014  ax-0id 8015  ax-rnegex 8016  ax-precex 8017  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023  ax-pre-mulgt0 8024  ax-pre-mulext 8025
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-ilim 4414  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-frec 6467  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-reap 8630  df-ap 8637  df-div 8728  df-inn 9019  df-2 9077  df-n0 9278  df-z 9355  df-uz 9631  df-q 9723  df-rp 9758  df-fz 10113  df-seqfrec 10574  df-fac 10852  df-bc 10874
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator