![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bcn2m1 | GIF version |
Description: Compute the binomial coefficient "𝑁 choose 2 " from "(𝑁 − 1) choose 2 ": (N-1) + ( (N-1) 2 ) = ( N 2 ). (Contributed by Alexander van der Vekens, 7-Jan-2018.) |
Ref | Expression |
---|---|
bcn2m1 | ⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) + ((𝑁 − 1)C2)) = (𝑁C2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnm1nn0 8775 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) | |
2 | 1 | nn0cnd 8789 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℂ) |
3 | 2z 8839 | . . . . 5 ⊢ 2 ∈ ℤ | |
4 | bccl 10236 | . . . . 5 ⊢ (((𝑁 − 1) ∈ ℕ0 ∧ 2 ∈ ℤ) → ((𝑁 − 1)C2) ∈ ℕ0) | |
5 | 1, 3, 4 | sylancl 405 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((𝑁 − 1)C2) ∈ ℕ0) |
6 | 5 | nn0cnd 8789 | . . 3 ⊢ (𝑁 ∈ ℕ → ((𝑁 − 1)C2) ∈ ℂ) |
7 | 2, 6 | addcomd 7694 | . 2 ⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) + ((𝑁 − 1)C2)) = (((𝑁 − 1)C2) + (𝑁 − 1))) |
8 | bcn1 10227 | . . . . . 6 ⊢ ((𝑁 − 1) ∈ ℕ0 → ((𝑁 − 1)C1) = (𝑁 − 1)) | |
9 | 8 | eqcomd 2094 | . . . . 5 ⊢ ((𝑁 − 1) ∈ ℕ0 → (𝑁 − 1) = ((𝑁 − 1)C1)) |
10 | 1, 9 | syl 14 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) = ((𝑁 − 1)C1)) |
11 | 1e2m1 8602 | . . . . . 6 ⊢ 1 = (2 − 1) | |
12 | 11 | a1i 9 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 1 = (2 − 1)) |
13 | 12 | oveq2d 5682 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((𝑁 − 1)C1) = ((𝑁 − 1)C(2 − 1))) |
14 | 10, 13 | eqtrd 2121 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) = ((𝑁 − 1)C(2 − 1))) |
15 | 14 | oveq2d 5682 | . 2 ⊢ (𝑁 ∈ ℕ → (((𝑁 − 1)C2) + (𝑁 − 1)) = (((𝑁 − 1)C2) + ((𝑁 − 1)C(2 − 1)))) |
16 | bcpasc 10235 | . . . 4 ⊢ (((𝑁 − 1) ∈ ℕ0 ∧ 2 ∈ ℤ) → (((𝑁 − 1)C2) + ((𝑁 − 1)C(2 − 1))) = (((𝑁 − 1) + 1)C2)) | |
17 | 1, 3, 16 | sylancl 405 | . . 3 ⊢ (𝑁 ∈ ℕ → (((𝑁 − 1)C2) + ((𝑁 − 1)C(2 − 1))) = (((𝑁 − 1) + 1)C2)) |
18 | nncn 8491 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
19 | 1cnd 7565 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 1 ∈ ℂ) | |
20 | 18, 19 | npcand 7858 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁) |
21 | 20 | oveq1d 5681 | . . 3 ⊢ (𝑁 ∈ ℕ → (((𝑁 − 1) + 1)C2) = (𝑁C2)) |
22 | 17, 21 | eqtrd 2121 | . 2 ⊢ (𝑁 ∈ ℕ → (((𝑁 − 1)C2) + ((𝑁 − 1)C(2 − 1))) = (𝑁C2)) |
23 | 7, 15, 22 | 3eqtrd 2125 | 1 ⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) + ((𝑁 − 1)C2)) = (𝑁C2)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1290 ∈ wcel 1439 (class class class)co 5666 1c1 7412 + caddc 7414 − cmin 7714 ℕcn 8483 2c2 8534 ℕ0cn0 8734 ℤcz 8811 Ccbc 10216 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-coll 3960 ax-sep 3963 ax-nul 3971 ax-pow 4015 ax-pr 4045 ax-un 4269 ax-setind 4366 ax-iinf 4416 ax-cnex 7497 ax-resscn 7498 ax-1cn 7499 ax-1re 7500 ax-icn 7501 ax-addcl 7502 ax-addrcl 7503 ax-mulcl 7504 ax-mulrcl 7505 ax-addcom 7506 ax-mulcom 7507 ax-addass 7508 ax-mulass 7509 ax-distr 7510 ax-i2m1 7511 ax-0lt1 7512 ax-1rid 7513 ax-0id 7514 ax-rnegex 7515 ax-precex 7516 ax-cnre 7517 ax-pre-ltirr 7518 ax-pre-ltwlin 7519 ax-pre-lttrn 7520 ax-pre-apti 7521 ax-pre-ltadd 7522 ax-pre-mulgt0 7523 ax-pre-mulext 7524 |
This theorem depends on definitions: df-bi 116 df-dc 782 df-3or 926 df-3an 927 df-tru 1293 df-fal 1296 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ne 2257 df-nel 2352 df-ral 2365 df-rex 2366 df-reu 2367 df-rmo 2368 df-rab 2369 df-v 2622 df-sbc 2842 df-csb 2935 df-dif 3002 df-un 3004 df-in 3006 df-ss 3013 df-nul 3288 df-if 3398 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-int 3695 df-iun 3738 df-br 3852 df-opab 3906 df-mpt 3907 df-tr 3943 df-id 4129 df-po 4132 df-iso 4133 df-iord 4202 df-on 4204 df-ilim 4205 df-suc 4207 df-iom 4419 df-xp 4458 df-rel 4459 df-cnv 4460 df-co 4461 df-dm 4462 df-rn 4463 df-res 4464 df-ima 4465 df-iota 4993 df-fun 5030 df-fn 5031 df-f 5032 df-f1 5033 df-fo 5034 df-f1o 5035 df-fv 5036 df-riota 5622 df-ov 5669 df-oprab 5670 df-mpt2 5671 df-1st 5925 df-2nd 5926 df-recs 6084 df-frec 6170 df-pnf 7585 df-mnf 7586 df-xr 7587 df-ltxr 7588 df-le 7589 df-sub 7716 df-neg 7717 df-reap 8113 df-ap 8120 df-div 8201 df-inn 8484 df-2 8542 df-n0 8735 df-z 8812 df-uz 9081 df-q 9166 df-rp 9196 df-fz 9486 df-iseq 9914 df-fac 10195 df-bc 10217 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |