| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cosneg | GIF version | ||
| Description: The cosines of a number and its negative are the same. (Contributed by NM, 30-Apr-2005.) |
| Ref | Expression |
|---|---|
| cosneg | ⊢ (𝐴 ∈ ℂ → (cos‘-𝐴) = (cos‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn 8090 | . . . . . . . 8 ⊢ i ∈ ℂ | |
| 2 | mulneg12 8539 | . . . . . . . 8 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) = (i · -𝐴)) | |
| 3 | 1, 2 | mpan 424 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (-i · 𝐴) = (i · -𝐴)) |
| 4 | 3 | eqcomd 2235 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (i · -𝐴) = (-i · 𝐴)) |
| 5 | 4 | fveq2d 5630 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘(i · -𝐴)) = (exp‘(-i · 𝐴))) |
| 6 | mul2neg 8540 | . . . . . . 7 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · -𝐴) = (i · 𝐴)) | |
| 7 | 1, 6 | mpan 424 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (-i · -𝐴) = (i · 𝐴)) |
| 8 | 7 | fveq2d 5630 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘(-i · -𝐴)) = (exp‘(i · 𝐴))) |
| 9 | 5, 8 | oveq12d 6018 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((exp‘(i · -𝐴)) + (exp‘(-i · -𝐴))) = ((exp‘(-i · 𝐴)) + (exp‘(i · 𝐴)))) |
| 10 | negicn 8343 | . . . . . . 7 ⊢ -i ∈ ℂ | |
| 11 | mulcl 8122 | . . . . . . 7 ⊢ ((-i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) ∈ ℂ) | |
| 12 | 10, 11 | mpan 424 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (-i · 𝐴) ∈ ℂ) |
| 13 | efcl 12170 | . . . . . 6 ⊢ ((-i · 𝐴) ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ) | |
| 14 | 12, 13 | syl 14 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘(-i · 𝐴)) ∈ ℂ) |
| 15 | mulcl 8122 | . . . . . . 7 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ) | |
| 16 | 1, 15 | mpan 424 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ) |
| 17 | efcl 12170 | . . . . . 6 ⊢ ((i · 𝐴) ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ) | |
| 18 | 16, 17 | syl 14 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘(i · 𝐴)) ∈ ℂ) |
| 19 | 14, 18 | addcomd 8293 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((exp‘(-i · 𝐴)) + (exp‘(i · 𝐴))) = ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))) |
| 20 | 9, 19 | eqtrd 2262 | . . 3 ⊢ (𝐴 ∈ ℂ → ((exp‘(i · -𝐴)) + (exp‘(-i · -𝐴))) = ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))) |
| 21 | 20 | oveq1d 6015 | . 2 ⊢ (𝐴 ∈ ℂ → (((exp‘(i · -𝐴)) + (exp‘(-i · -𝐴))) / 2) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)) |
| 22 | negcl 8342 | . . 3 ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) | |
| 23 | cosval 12209 | . . 3 ⊢ (-𝐴 ∈ ℂ → (cos‘-𝐴) = (((exp‘(i · -𝐴)) + (exp‘(-i · -𝐴))) / 2)) | |
| 24 | 22, 23 | syl 14 | . 2 ⊢ (𝐴 ∈ ℂ → (cos‘-𝐴) = (((exp‘(i · -𝐴)) + (exp‘(-i · -𝐴))) / 2)) |
| 25 | cosval 12209 | . 2 ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴))) / 2)) | |
| 26 | 21, 24, 25 | 3eqtr4d 2272 | 1 ⊢ (𝐴 ∈ ℂ → (cos‘-𝐴) = (cos‘𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 ‘cfv 5317 (class class class)co 6000 ℂcc 7993 ici 7997 + caddc 7998 · cmul 8000 -cneg 8314 / cdiv 8815 2c2 9157 expce 12148 cosccos 12151 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 ax-arch 8114 ax-caucvg 8115 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-po 4386 df-iso 4387 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-isom 5326 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-irdg 6514 df-frec 6535 df-1o 6560 df-oadd 6564 df-er 6678 df-en 6886 df-dom 6887 df-fin 6888 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 df-div 8816 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-n0 9366 df-z 9443 df-uz 9719 df-q 9811 df-rp 9846 df-ico 10086 df-fz 10201 df-fzo 10335 df-seqfrec 10665 df-exp 10756 df-fac 10943 df-ihash 10993 df-cj 11348 df-re 11349 df-im 11350 df-rsqrt 11504 df-abs 11505 df-clim 11785 df-sumdc 11860 df-ef 12154 df-cos 12157 |
| This theorem is referenced by: tannegap 12234 efmival 12239 sinsub 12246 cossub 12247 sincossq 12254 cosneghalfpi 15466 cos2pim 15482 ptolemy 15492 coseq0negpitopi 15504 cosq34lt1 15518 |
| Copyright terms: Public domain | W3C validator |