![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > modqaddabs | GIF version |
Description: Absorption law for modulo. (Contributed by Jim Kingdon, 22-Oct-2021.) |
Ref | Expression |
---|---|
modqaddabs | ⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (((𝐴 mod 𝐶) + (𝐵 mod 𝐶)) mod 𝐶) = ((𝐴 + 𝐵) mod 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 527 | . . . . . 6 ⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐴 ∈ ℚ) | |
2 | simprl 529 | . . . . . 6 ⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐶 ∈ ℚ) | |
3 | simprr 531 | . . . . . 6 ⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 0 < 𝐶) | |
4 | 1, 2, 3 | modqcld 10361 | . . . . 5 ⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐴 mod 𝐶) ∈ ℚ) |
5 | qcn 9666 | . . . . 5 ⊢ ((𝐴 mod 𝐶) ∈ ℚ → (𝐴 mod 𝐶) ∈ ℂ) | |
6 | 4, 5 | syl 14 | . . . 4 ⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐴 mod 𝐶) ∈ ℂ) |
7 | simplr 528 | . . . . . 6 ⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐵 ∈ ℚ) | |
8 | 7, 2, 3 | modqcld 10361 | . . . . 5 ⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐵 mod 𝐶) ∈ ℚ) |
9 | qcn 9666 | . . . . 5 ⊢ ((𝐵 mod 𝐶) ∈ ℚ → (𝐵 mod 𝐶) ∈ ℂ) | |
10 | 8, 9 | syl 14 | . . . 4 ⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (𝐵 mod 𝐶) ∈ ℂ) |
11 | 6, 10 | addcomd 8139 | . . 3 ⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → ((𝐴 mod 𝐶) + (𝐵 mod 𝐶)) = ((𝐵 mod 𝐶) + (𝐴 mod 𝐶))) |
12 | 11 | oveq1d 5912 | . 2 ⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (((𝐴 mod 𝐶) + (𝐵 mod 𝐶)) mod 𝐶) = (((𝐵 mod 𝐶) + (𝐴 mod 𝐶)) mod 𝐶)) |
13 | modqabs2 10391 | . . . . 5 ⊢ ((𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ∧ 0 < 𝐶) → ((𝐵 mod 𝐶) mod 𝐶) = (𝐵 mod 𝐶)) | |
14 | 7, 2, 3, 13 | syl3anc 1249 | . . . 4 ⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → ((𝐵 mod 𝐶) mod 𝐶) = (𝐵 mod 𝐶)) |
15 | 8, 7, 4, 2, 3, 14 | modqadd1 10394 | . . 3 ⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (((𝐵 mod 𝐶) + (𝐴 mod 𝐶)) mod 𝐶) = ((𝐵 + (𝐴 mod 𝐶)) mod 𝐶)) |
16 | qcn 9666 | . . . . . 6 ⊢ (𝐵 ∈ ℚ → 𝐵 ∈ ℂ) | |
17 | 7, 16 | syl 14 | . . . . 5 ⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → 𝐵 ∈ ℂ) |
18 | 6, 17 | addcomd 8139 | . . . 4 ⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → ((𝐴 mod 𝐶) + 𝐵) = (𝐵 + (𝐴 mod 𝐶))) |
19 | 18 | oveq1d 5912 | . . 3 ⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (((𝐴 mod 𝐶) + 𝐵) mod 𝐶) = ((𝐵 + (𝐴 mod 𝐶)) mod 𝐶)) |
20 | 15, 19 | eqtr4d 2225 | . 2 ⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (((𝐵 mod 𝐶) + (𝐴 mod 𝐶)) mod 𝐶) = (((𝐴 mod 𝐶) + 𝐵) mod 𝐶)) |
21 | modqabs2 10391 | . . . 4 ⊢ ((𝐴 ∈ ℚ ∧ 𝐶 ∈ ℚ ∧ 0 < 𝐶) → ((𝐴 mod 𝐶) mod 𝐶) = (𝐴 mod 𝐶)) | |
22 | 1, 2, 3, 21 | syl3anc 1249 | . . 3 ⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → ((𝐴 mod 𝐶) mod 𝐶) = (𝐴 mod 𝐶)) |
23 | 4, 1, 7, 2, 3, 22 | modqadd1 10394 | . 2 ⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (((𝐴 mod 𝐶) + 𝐵) mod 𝐶) = ((𝐴 + 𝐵) mod 𝐶)) |
24 | 12, 20, 23 | 3eqtrd 2226 | 1 ⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝐶 ∈ ℚ ∧ 0 < 𝐶)) → (((𝐴 mod 𝐶) + (𝐵 mod 𝐶)) mod 𝐶) = ((𝐴 + 𝐵) mod 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2160 class class class wbr 4018 (class class class)co 5897 ℂcc 7840 0cc0 7842 + caddc 7845 < clt 8023 ℚcq 9651 mod cmo 10355 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7933 ax-resscn 7934 ax-1cn 7935 ax-1re 7936 ax-icn 7937 ax-addcl 7938 ax-addrcl 7939 ax-mulcl 7940 ax-mulrcl 7941 ax-addcom 7942 ax-mulcom 7943 ax-addass 7944 ax-mulass 7945 ax-distr 7946 ax-i2m1 7947 ax-0lt1 7948 ax-1rid 7949 ax-0id 7950 ax-rnegex 7951 ax-precex 7952 ax-cnre 7953 ax-pre-ltirr 7954 ax-pre-ltwlin 7955 ax-pre-lttrn 7956 ax-pre-apti 7957 ax-pre-ltadd 7958 ax-pre-mulgt0 7959 ax-pre-mulext 7960 ax-arch 7961 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-po 4314 df-iso 4315 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-fv 5243 df-riota 5852 df-ov 5900 df-oprab 5901 df-mpo 5902 df-1st 6166 df-2nd 6167 df-pnf 8025 df-mnf 8026 df-xr 8027 df-ltxr 8028 df-le 8029 df-sub 8161 df-neg 8162 df-reap 8563 df-ap 8570 df-div 8661 df-inn 8951 df-n0 9208 df-z 9285 df-q 9652 df-rp 9686 df-fl 10303 df-mod 10356 |
This theorem is referenced by: modfsummodlemstep 11500 |
Copyright terms: Public domain | W3C validator |