ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addge0d GIF version

Theorem addge0d 8566
Description: Addition of 2 nonnegative numbers is nonnegative. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
leidd.1 (𝜑𝐴 ∈ ℝ)
ltnegd.2 (𝜑𝐵 ∈ ℝ)
addge0d.3 (𝜑 → 0 ≤ 𝐴)
addge0d.4 (𝜑 → 0 ≤ 𝐵)
Assertion
Ref Expression
addge0d (𝜑 → 0 ≤ (𝐴 + 𝐵))

Proof of Theorem addge0d
StepHypRef Expression
1 leidd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 ltnegd.2 . 2 (𝜑𝐵 ∈ ℝ)
3 addge0d.3 . 2 (𝜑 → 0 ≤ 𝐴)
4 addge0d.4 . 2 (𝜑 → 0 ≤ 𝐵)
5 addge0 8495 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 + 𝐵))
61, 2, 3, 4, 5syl22anc 1250 1 (𝜑 → 0 ≤ (𝐴 + 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167   class class class wbr 4034  (class class class)co 5925  cr 7895  0cc0 7896   + caddc 7899  cle 8079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0id 8004  ax-rnegex 8005  ax-pre-ltwlin 8009  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-xp 4670  df-cnv 4672  df-iota 5220  df-fv 5267  df-ov 5928  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084
This theorem is referenced by:  flqdiv  10430  modaddmodlo  10497  ser3ge0  10645  cjmulge0  11071  abs00ap  11244  absext  11245  absrele  11265  abstri  11286  bdtrilem  11421  nn0oddm1d2  12091
  Copyright terms: Public domain W3C validator