| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitsss | GIF version | ||
| Description: The set of bits of an integer is a subset of ℕ0. (Contributed by Mario Carneiro, 5-Sep-2016.) |
| Ref | Expression |
|---|---|
| bitsss | ⊢ (bits‘𝑁) ⊆ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitsval 12420 | . . 3 ⊢ (𝑚 ∈ (bits‘𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑚 ∈ ℕ0 ∧ ¬ 2 ∥ (⌊‘(𝑁 / (2↑𝑚))))) | |
| 2 | 1 | simp2bi 1018 | . 2 ⊢ (𝑚 ∈ (bits‘𝑁) → 𝑚 ∈ ℕ0) |
| 3 | 2 | ssriv 3208 | 1 ⊢ (bits‘𝑁) ⊆ ℕ0 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∈ wcel 2180 ⊆ wss 3177 class class class wbr 4062 ‘cfv 5294 (class class class)co 5974 / cdiv 8787 2c2 9129 ℕ0cn0 9337 ℤcz 9414 ⌊cfl 10455 ↑cexp 10727 ∥ cdvds 12264 bitscbits 12417 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-i2m1 8072 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-rab 2497 df-v 2781 df-sbc 3009 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fv 5302 df-ov 5977 df-inn 9079 df-n0 9338 df-bits 12418 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |