ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mopnset GIF version

Theorem mopnset 14524
Description: Getting a set by applying MetOpen. (Contributed by Jim Kingdon, 24-Sep-2025.)
Assertion
Ref Expression
mopnset (𝐷𝑉 → (MetOpen‘𝐷) ∈ V)

Proof of Theorem mopnset
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 blfn 14523 . . . . . 6 ball Fn V
2 vex 2802 . . . . . 6 𝑑 ∈ V
3 funfvex 5646 . . . . . . 7 ((Fun ball ∧ 𝑑 ∈ dom ball) → (ball‘𝑑) ∈ V)
43funfni 5423 . . . . . 6 ((ball Fn V ∧ 𝑑 ∈ V) → (ball‘𝑑) ∈ V)
51, 2, 4mp2an 426 . . . . 5 (ball‘𝑑) ∈ V
65rnex 4992 . . . 4 ran (ball‘𝑑) ∈ V
7 tgvalex 13304 . . . 4 (ran (ball‘𝑑) ∈ V → (topGen‘ran (ball‘𝑑)) ∈ V)
86, 7ax-mp 5 . . 3 (topGen‘ran (ball‘𝑑)) ∈ V
98ax-gen 1495 . 2 𝑑(topGen‘ran (ball‘𝑑)) ∈ V
10 df-mopn 14519 . . 3 MetOpen = (𝑑 ran ∞Met ↦ (topGen‘ran (ball‘𝑑)))
1110mptfvex 5722 . 2 ((∀𝑑(topGen‘ran (ball‘𝑑)) ∈ V ∧ 𝐷𝑉) → (MetOpen‘𝐷) ∈ V)
129, 11mpan 424 1 (𝐷𝑉 → (MetOpen‘𝐷) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1393  wcel 2200  Vcvv 2799   cuni 3888  ran crn 4720   Fn wfn 5313  cfv 5318  topGenctg 13295  ∞Metcxmet 14508  ballcbl 14510  MetOpencmopn 14513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-cnex 8098  ax-resscn 8099
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-pnf 8191  df-mnf 8192  df-xr 8193  df-topgen 13301  df-bl 14518  df-mopn 14519
This theorem is referenced by:  cntopex  14526
  Copyright terms: Public domain W3C validator