ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mopnset GIF version

Theorem mopnset 14108
Description: Getting a set by applying MetOpen. (Contributed by Jim Kingdon, 24-Sep-2025.)
Assertion
Ref Expression
mopnset (𝐷𝑉 → (MetOpen‘𝐷) ∈ V)

Proof of Theorem mopnset
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 blfn 14107 . . . . . 6 ball Fn V
2 vex 2766 . . . . . 6 𝑑 ∈ V
3 funfvex 5575 . . . . . . 7 ((Fun ball ∧ 𝑑 ∈ dom ball) → (ball‘𝑑) ∈ V)
43funfni 5358 . . . . . 6 ((ball Fn V ∧ 𝑑 ∈ V) → (ball‘𝑑) ∈ V)
51, 2, 4mp2an 426 . . . . 5 (ball‘𝑑) ∈ V
65rnex 4933 . . . 4 ran (ball‘𝑑) ∈ V
7 tgvalex 12934 . . . 4 (ran (ball‘𝑑) ∈ V → (topGen‘ran (ball‘𝑑)) ∈ V)
86, 7ax-mp 5 . . 3 (topGen‘ran (ball‘𝑑)) ∈ V
98ax-gen 1463 . 2 𝑑(topGen‘ran (ball‘𝑑)) ∈ V
10 df-mopn 14103 . . 3 MetOpen = (𝑑 ran ∞Met ↦ (topGen‘ran (ball‘𝑑)))
1110mptfvex 5647 . 2 ((∀𝑑(topGen‘ran (ball‘𝑑)) ∈ V ∧ 𝐷𝑉) → (MetOpen‘𝐷) ∈ V)
129, 11mpan 424 1 (𝐷𝑉 → (MetOpen‘𝐷) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1362  wcel 2167  Vcvv 2763   cuni 3839  ran crn 4664   Fn wfn 5253  cfv 5258  topGenctg 12925  ∞Metcxmet 14092  ballcbl 14094  MetOpencmopn 14097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8063  df-mnf 8064  df-xr 8065  df-topgen 12931  df-bl 14102  df-mopn 14103
This theorem is referenced by:  cntopex  14110
  Copyright terms: Public domain W3C validator