| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mopnset | GIF version | ||
| Description: Getting a set by applying MetOpen. (Contributed by Jim Kingdon, 24-Sep-2025.) |
| Ref | Expression |
|---|---|
| mopnset | ⊢ (𝐷 ∈ 𝑉 → (MetOpen‘𝐷) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | blfn 14357 | . . . . . 6 ⊢ ball Fn V | |
| 2 | vex 2776 | . . . . . 6 ⊢ 𝑑 ∈ V | |
| 3 | funfvex 5600 | . . . . . . 7 ⊢ ((Fun ball ∧ 𝑑 ∈ dom ball) → (ball‘𝑑) ∈ V) | |
| 4 | 3 | funfni 5381 | . . . . . 6 ⊢ ((ball Fn V ∧ 𝑑 ∈ V) → (ball‘𝑑) ∈ V) |
| 5 | 1, 2, 4 | mp2an 426 | . . . . 5 ⊢ (ball‘𝑑) ∈ V |
| 6 | 5 | rnex 4951 | . . . 4 ⊢ ran (ball‘𝑑) ∈ V |
| 7 | tgvalex 13139 | . . . 4 ⊢ (ran (ball‘𝑑) ∈ V → (topGen‘ran (ball‘𝑑)) ∈ V) | |
| 8 | 6, 7 | ax-mp 5 | . . 3 ⊢ (topGen‘ran (ball‘𝑑)) ∈ V |
| 9 | 8 | ax-gen 1473 | . 2 ⊢ ∀𝑑(topGen‘ran (ball‘𝑑)) ∈ V |
| 10 | df-mopn 14353 | . . 3 ⊢ MetOpen = (𝑑 ∈ ∪ ran ∞Met ↦ (topGen‘ran (ball‘𝑑))) | |
| 11 | 10 | mptfvex 5672 | . 2 ⊢ ((∀𝑑(topGen‘ran (ball‘𝑑)) ∈ V ∧ 𝐷 ∈ 𝑉) → (MetOpen‘𝐷) ∈ V) |
| 12 | 9, 11 | mpan 424 | 1 ⊢ (𝐷 ∈ 𝑉 → (MetOpen‘𝐷) ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 ∈ wcel 2177 Vcvv 2773 ∪ cuni 3852 ran crn 4680 Fn wfn 5271 ‘cfv 5276 topGenctg 13130 ∞Metcxmet 14342 ballcbl 14344 MetOpencmopn 14347 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-cnex 8023 ax-resscn 8024 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-pnf 8116 df-mnf 8117 df-xr 8118 df-topgen 13136 df-bl 14352 df-mopn 14353 |
| This theorem is referenced by: cntopex 14360 |
| Copyright terms: Public domain | W3C validator |