ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mopnset GIF version

Theorem mopnset 14481
Description: Getting a set by applying MetOpen. (Contributed by Jim Kingdon, 24-Sep-2025.)
Assertion
Ref Expression
mopnset (𝐷𝑉 → (MetOpen‘𝐷) ∈ V)

Proof of Theorem mopnset
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 blfn 14480 . . . . . 6 ball Fn V
2 vex 2782 . . . . . 6 𝑑 ∈ V
3 funfvex 5620 . . . . . . 7 ((Fun ball ∧ 𝑑 ∈ dom ball) → (ball‘𝑑) ∈ V)
43funfni 5399 . . . . . 6 ((ball Fn V ∧ 𝑑 ∈ V) → (ball‘𝑑) ∈ V)
51, 2, 4mp2an 426 . . . . 5 (ball‘𝑑) ∈ V
65rnex 4968 . . . 4 ran (ball‘𝑑) ∈ V
7 tgvalex 13262 . . . 4 (ran (ball‘𝑑) ∈ V → (topGen‘ran (ball‘𝑑)) ∈ V)
86, 7ax-mp 5 . . 3 (topGen‘ran (ball‘𝑑)) ∈ V
98ax-gen 1475 . 2 𝑑(topGen‘ran (ball‘𝑑)) ∈ V
10 df-mopn 14476 . . 3 MetOpen = (𝑑 ran ∞Met ↦ (topGen‘ran (ball‘𝑑)))
1110mptfvex 5693 . 2 ((∀𝑑(topGen‘ran (ball‘𝑑)) ∈ V ∧ 𝐷𝑉) → (MetOpen‘𝐷) ∈ V)
129, 11mpan 424 1 (𝐷𝑉 → (MetOpen‘𝐷) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1373  wcel 2180  Vcvv 2779   cuni 3867  ran crn 4697   Fn wfn 5289  cfv 5294  topGenctg 13253  ∞Metcxmet 14465  ballcbl 14467  MetOpencmopn 14470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-cnex 8058  ax-resscn 8059
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-pnf 8151  df-mnf 8152  df-xr 8153  df-topgen 13259  df-bl 14475  df-mopn 14476
This theorem is referenced by:  cntopex  14483
  Copyright terms: Public domain W3C validator