ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusrhm GIF version

Theorem qusrhm 14405
Description: If 𝑆 is a two-sided ideal in 𝑅, then the "natural map" from elements to their cosets is a ring homomorphism from 𝑅 to 𝑅 / 𝑆. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
qusring.u 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))
qusring.i 𝐼 = (2Ideal‘𝑅)
qusrhm.x 𝑋 = (Base‘𝑅)
qusrhm.f 𝐹 = (𝑥𝑋 ↦ [𝑥](𝑅 ~QG 𝑆))
Assertion
Ref Expression
qusrhm ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝐹 ∈ (𝑅 RingHom 𝑈))
Distinct variable groups:   𝑥,𝐼   𝑥,𝑅   𝑥,𝑆   𝑥,𝑈   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem qusrhm
Dummy variables 𝑦 𝑧 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusrhm.x . 2 𝑋 = (Base‘𝑅)
2 eqid 2207 . 2 (1r𝑅) = (1r𝑅)
3 eqid 2207 . 2 (1r𝑈) = (1r𝑈)
4 eqid 2207 . 2 (.r𝑅) = (.r𝑅)
5 eqid 2207 . 2 (.r𝑈) = (.r𝑈)
6 simpl 109 . 2 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑅 ∈ Ring)
7 qusring.u . . 3 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))
8 qusring.i . . 3 𝐼 = (2Ideal‘𝑅)
97, 8qusring 14404 . 2 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑈 ∈ Ring)
10 eqid 2207 . . . . . . . 8 (LIdeal‘𝑅) = (LIdeal‘𝑅)
11 eqid 2207 . . . . . . . 8 (oppr𝑅) = (oppr𝑅)
12 eqid 2207 . . . . . . . 8 (LIdeal‘(oppr𝑅)) = (LIdeal‘(oppr𝑅))
1310, 11, 12, 82idlelb 14382 . . . . . . 7 (𝑆𝐼 ↔ (𝑆 ∈ (LIdeal‘𝑅) ∧ 𝑆 ∈ (LIdeal‘(oppr𝑅))))
1413simplbi 274 . . . . . 6 (𝑆𝐼𝑆 ∈ (LIdeal‘𝑅))
1510lidlsubg 14363 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑆 ∈ (LIdeal‘𝑅)) → 𝑆 ∈ (SubGrp‘𝑅))
1614, 15sylan2 286 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑆 ∈ (SubGrp‘𝑅))
17 eqid 2207 . . . . . 6 (𝑅 ~QG 𝑆) = (𝑅 ~QG 𝑆)
181, 17eqger 13675 . . . . 5 (𝑆 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝑆) Er 𝑋)
1916, 18syl 14 . . . 4 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → (𝑅 ~QG 𝑆) Er 𝑋)
20 basfn 13005 . . . . . 6 Base Fn V
216elexd 2790 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑅 ∈ V)
22 funfvex 5616 . . . . . . 7 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
2322funfni 5395 . . . . . 6 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
2420, 21, 23sylancr 414 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → (Base‘𝑅) ∈ V)
251, 24eqeltrid 2294 . . . 4 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑋 ∈ V)
26 qusrhm.f . . . 4 𝐹 = (𝑥𝑋 ↦ [𝑥](𝑅 ~QG 𝑆))
2719, 25, 26divsfval 13275 . . 3 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → (𝐹‘(1r𝑅)) = [(1r𝑅)](𝑅 ~QG 𝑆))
287, 8, 2qus1 14403 . . . 4 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → (𝑈 ∈ Ring ∧ [(1r𝑅)](𝑅 ~QG 𝑆) = (1r𝑈)))
2928simprd 114 . . 3 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → [(1r𝑅)](𝑅 ~QG 𝑆) = (1r𝑈))
3027, 29eqtrd 2240 . 2 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → (𝐹‘(1r𝑅)) = (1r𝑈))
317a1i 9 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆)))
321a1i 9 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑋 = (Base‘𝑅))
331, 17, 8, 42idlcpbl 14401 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → ((𝑎(𝑅 ~QG 𝑆)𝑐𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(.r𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(.r𝑅)𝑑)))
341, 4ringcl 13890 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑦𝑋𝑧𝑋) → (𝑦(.r𝑅)𝑧) ∈ 𝑋)
35343expb 1207 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑦𝑋𝑧𝑋)) → (𝑦(.r𝑅)𝑧) ∈ 𝑋)
3635adantlr 477 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝑦𝑋𝑧𝑋)) → (𝑦(.r𝑅)𝑧) ∈ 𝑋)
3736caovclg 6122 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝑐𝑋𝑑𝑋)) → (𝑐(.r𝑅)𝑑) ∈ 𝑋)
3831, 32, 19, 6, 33, 37, 4, 5qusmulval 13284 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ 𝑦𝑋𝑧𝑋) → ([𝑦](𝑅 ~QG 𝑆)(.r𝑈)[𝑧](𝑅 ~QG 𝑆)) = [(𝑦(.r𝑅)𝑧)](𝑅 ~QG 𝑆))
39383expb 1207 . . 3 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝑦𝑋𝑧𝑋)) → ([𝑦](𝑅 ~QG 𝑆)(.r𝑈)[𝑧](𝑅 ~QG 𝑆)) = [(𝑦(.r𝑅)𝑧)](𝑅 ~QG 𝑆))
4019adantr 276 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝑦𝑋𝑧𝑋)) → (𝑅 ~QG 𝑆) Er 𝑋)
4125adantr 276 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝑦𝑋𝑧𝑋)) → 𝑋 ∈ V)
4240, 41, 26divsfval 13275 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹𝑦) = [𝑦](𝑅 ~QG 𝑆))
4340, 41, 26divsfval 13275 . . . 4 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹𝑧) = [𝑧](𝑅 ~QG 𝑆))
4442, 43oveq12d 5985 . . 3 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝑦𝑋𝑧𝑋)) → ((𝐹𝑦)(.r𝑈)(𝐹𝑧)) = ([𝑦](𝑅 ~QG 𝑆)(.r𝑈)[𝑧](𝑅 ~QG 𝑆)))
4540, 41, 26divsfval 13275 . . 3 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹‘(𝑦(.r𝑅)𝑧)) = [(𝑦(.r𝑅)𝑧)](𝑅 ~QG 𝑆))
4639, 44, 453eqtr4rd 2251 . 2 (((𝑅 ∈ Ring ∧ 𝑆𝐼) ∧ (𝑦𝑋𝑧𝑋)) → (𝐹‘(𝑦(.r𝑅)𝑧)) = ((𝐹𝑦)(.r𝑈)(𝐹𝑧)))
47 ringabl 13909 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Abel)
4847adantr 276 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑅 ∈ Abel)
49 ablnsg 13785 . . . . 5 (𝑅 ∈ Abel → (NrmSGrp‘𝑅) = (SubGrp‘𝑅))
5048, 49syl 14 . . . 4 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → (NrmSGrp‘𝑅) = (SubGrp‘𝑅))
5116, 50eleqtrrd 2287 . . 3 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑆 ∈ (NrmSGrp‘𝑅))
521, 7, 26qusghm 13733 . . 3 (𝑆 ∈ (NrmSGrp‘𝑅) → 𝐹 ∈ (𝑅 GrpHom 𝑈))
5351, 52syl 14 . 2 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝐹 ∈ (𝑅 GrpHom 𝑈))
541, 2, 3, 4, 5, 6, 9, 30, 46, 53isrhm2d 14042 1 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝐹 ∈ (𝑅 RingHom 𝑈))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2178  Vcvv 2776  cmpt 4121   Fn wfn 5285  cfv 5290  (class class class)co 5967   Er wer 6640  [cec 6641  Basecbs 12947  .rcmulr 13025   /s cqus 13247  SubGrpcsubg 13618  NrmSGrpcnsg 13619   ~QG cqg 13620   GrpHom cghm 13691  Abelcabl 13736  1rcur 13836  Ringcrg 13873  opprcoppr 13944   RingHom crh 14027  LIdealclidl 14344  2Idealc2idl 14376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-tp 3651  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-tpos 6354  df-er 6643  df-ec 6645  df-qs 6649  df-map 6760  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-5 9133  df-6 9134  df-7 9135  df-8 9136  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-iress 12955  df-plusg 13037  df-mulr 13038  df-sca 13040  df-vsca 13041  df-ip 13042  df-0g 13205  df-iimas 13249  df-qus 13250  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-mhm 13406  df-grp 13450  df-minusg 13451  df-sbg 13452  df-subg 13621  df-nsg 13622  df-eqg 13623  df-ghm 13692  df-cmn 13737  df-abl 13738  df-mgp 13798  df-rng 13810  df-ur 13837  df-srg 13841  df-ring 13875  df-oppr 13945  df-rhm 14029  df-subrg 14096  df-lmod 14166  df-lssm 14230  df-sra 14312  df-rgmod 14313  df-lidl 14346  df-2idl 14377
This theorem is referenced by:  znzrh2  14523
  Copyright terms: Public domain W3C validator