| Step | Hyp | Ref
| Expression |
| 1 | | qusrhm.x |
. 2
⊢ 𝑋 = (Base‘𝑅) |
| 2 | | eqid 2196 |
. 2
⊢
(1r‘𝑅) = (1r‘𝑅) |
| 3 | | eqid 2196 |
. 2
⊢
(1r‘𝑈) = (1r‘𝑈) |
| 4 | | eqid 2196 |
. 2
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 5 | | eqid 2196 |
. 2
⊢
(.r‘𝑈) = (.r‘𝑈) |
| 6 | | simpl 109 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑅 ∈ Ring) |
| 7 | | qusring.u |
. . 3
⊢ 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆)) |
| 8 | | qusring.i |
. . 3
⊢ 𝐼 = (2Ideal‘𝑅) |
| 9 | 7, 8 | qusring 14159 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑈 ∈ Ring) |
| 10 | | eqid 2196 |
. . . . . . . 8
⊢
(LIdeal‘𝑅) =
(LIdeal‘𝑅) |
| 11 | | eqid 2196 |
. . . . . . . 8
⊢
(oppr‘𝑅) = (oppr‘𝑅) |
| 12 | | eqid 2196 |
. . . . . . . 8
⊢
(LIdeal‘(oppr‘𝑅)) =
(LIdeal‘(oppr‘𝑅)) |
| 13 | 10, 11, 12, 8 | 2idlelb 14137 |
. . . . . . 7
⊢ (𝑆 ∈ 𝐼 ↔ (𝑆 ∈ (LIdeal‘𝑅) ∧ 𝑆 ∈
(LIdeal‘(oppr‘𝑅)))) |
| 14 | 13 | simplbi 274 |
. . . . . 6
⊢ (𝑆 ∈ 𝐼 → 𝑆 ∈ (LIdeal‘𝑅)) |
| 15 | 10 | lidlsubg 14118 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ (LIdeal‘𝑅)) → 𝑆 ∈ (SubGrp‘𝑅)) |
| 16 | 14, 15 | sylan2 286 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑆 ∈ (SubGrp‘𝑅)) |
| 17 | | eqid 2196 |
. . . . . 6
⊢ (𝑅 ~QG 𝑆) = (𝑅 ~QG 𝑆) |
| 18 | 1, 17 | eqger 13430 |
. . . . 5
⊢ (𝑆 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝑆) Er 𝑋) |
| 19 | 16, 18 | syl 14 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → (𝑅 ~QG 𝑆) Er 𝑋) |
| 20 | | basfn 12761 |
. . . . . 6
⊢ Base Fn
V |
| 21 | 6 | elexd 2776 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑅 ∈ V) |
| 22 | | funfvex 5578 |
. . . . . . 7
⊢ ((Fun
Base ∧ 𝑅 ∈ dom
Base) → (Base‘𝑅)
∈ V) |
| 23 | 22 | funfni 5361 |
. . . . . 6
⊢ ((Base Fn
V ∧ 𝑅 ∈ V) →
(Base‘𝑅) ∈
V) |
| 24 | 20, 21, 23 | sylancr 414 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → (Base‘𝑅) ∈ V) |
| 25 | 1, 24 | eqeltrid 2283 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑋 ∈ V) |
| 26 | | qusrhm.f |
. . . 4
⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ [𝑥](𝑅 ~QG 𝑆)) |
| 27 | 19, 25, 26 | divsfval 13030 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → (𝐹‘(1r‘𝑅)) = [(1r‘𝑅)](𝑅 ~QG 𝑆)) |
| 28 | 7, 8, 2 | qus1 14158 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → (𝑈 ∈ Ring ∧
[(1r‘𝑅)](𝑅 ~QG 𝑆) = (1r‘𝑈))) |
| 29 | 28 | simprd 114 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → [(1r‘𝑅)](𝑅 ~QG 𝑆) = (1r‘𝑈)) |
| 30 | 27, 29 | eqtrd 2229 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → (𝐹‘(1r‘𝑅)) = (1r‘𝑈)) |
| 31 | 7 | a1i 9 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))) |
| 32 | 1 | a1i 9 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑋 = (Base‘𝑅)) |
| 33 | 1, 17, 8, 4 | 2idlcpbl 14156 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → ((𝑎(𝑅 ~QG 𝑆)𝑐 ∧ 𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(.r‘𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(.r‘𝑅)𝑑))) |
| 34 | 1, 4 | ringcl 13645 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑦(.r‘𝑅)𝑧) ∈ 𝑋) |
| 35 | 34 | 3expb 1206 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦(.r‘𝑅)𝑧) ∈ 𝑋) |
| 36 | 35 | adantlr 477 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦(.r‘𝑅)𝑧) ∈ 𝑋) |
| 37 | 36 | caovclg 6080 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝑐 ∈ 𝑋 ∧ 𝑑 ∈ 𝑋)) → (𝑐(.r‘𝑅)𝑑) ∈ 𝑋) |
| 38 | 31, 32, 19, 6, 33, 37, 4, 5 | qusmulval 13039 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → ([𝑦](𝑅 ~QG 𝑆)(.r‘𝑈)[𝑧](𝑅 ~QG 𝑆)) = [(𝑦(.r‘𝑅)𝑧)](𝑅 ~QG 𝑆)) |
| 39 | 38 | 3expb 1206 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ([𝑦](𝑅 ~QG 𝑆)(.r‘𝑈)[𝑧](𝑅 ~QG 𝑆)) = [(𝑦(.r‘𝑅)𝑧)](𝑅 ~QG 𝑆)) |
| 40 | 19 | adantr 276 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑅 ~QG 𝑆) Er 𝑋) |
| 41 | 25 | adantr 276 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑋 ∈ V) |
| 42 | 40, 41, 26 | divsfval 13030 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐹‘𝑦) = [𝑦](𝑅 ~QG 𝑆)) |
| 43 | 40, 41, 26 | divsfval 13030 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐹‘𝑧) = [𝑧](𝑅 ~QG 𝑆)) |
| 44 | 42, 43 | oveq12d 5943 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝐹‘𝑦)(.r‘𝑈)(𝐹‘𝑧)) = ([𝑦](𝑅 ~QG 𝑆)(.r‘𝑈)[𝑧](𝑅 ~QG 𝑆))) |
| 45 | 40, 41, 26 | divsfval 13030 |
. . 3
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐹‘(𝑦(.r‘𝑅)𝑧)) = [(𝑦(.r‘𝑅)𝑧)](𝑅 ~QG 𝑆)) |
| 46 | 39, 44, 45 | 3eqtr4rd 2240 |
. 2
⊢ (((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝐹‘(𝑦(.r‘𝑅)𝑧)) = ((𝐹‘𝑦)(.r‘𝑈)(𝐹‘𝑧))) |
| 47 | | ringabl 13664 |
. . . . . 6
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Abel) |
| 48 | 47 | adantr 276 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑅 ∈ Abel) |
| 49 | | ablnsg 13540 |
. . . . 5
⊢ (𝑅 ∈ Abel →
(NrmSGrp‘𝑅) =
(SubGrp‘𝑅)) |
| 50 | 48, 49 | syl 14 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → (NrmSGrp‘𝑅) = (SubGrp‘𝑅)) |
| 51 | 16, 50 | eleqtrrd 2276 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝑆 ∈ (NrmSGrp‘𝑅)) |
| 52 | 1, 7, 26 | qusghm 13488 |
. . 3
⊢ (𝑆 ∈ (NrmSGrp‘𝑅) → 𝐹 ∈ (𝑅 GrpHom 𝑈)) |
| 53 | 51, 52 | syl 14 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝐹 ∈ (𝑅 GrpHom 𝑈)) |
| 54 | 1, 2, 3, 4, 5, 6, 9, 30, 46, 53 | isrhm2d 13797 |
1
⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐼) → 𝐹 ∈ (𝑅 RingHom 𝑈)) |