| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ringcl | GIF version | ||
| Description: Closure of the multiplication operation of a ring. (Contributed by NM, 26-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| ringcl.b | ⊢ 𝐵 = (Base‘𝑅) |
| ringcl.t | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| ringcl | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 | . . . . 5 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 2 | 1 | ringmgp 13558 | . . . 4 ⊢ (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd) |
| 3 | 2 | 3ad2ant1 1020 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (mulGrp‘𝑅) ∈ Mnd) |
| 4 | simp2 1000 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 5 | ringcl.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
| 6 | 1, 5 | mgpbasg 13482 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝐵 = (Base‘(mulGrp‘𝑅))) |
| 7 | 6 | eleq2d 2266 | . . . . 5 ⊢ (𝑅 ∈ Ring → (𝑋 ∈ 𝐵 ↔ 𝑋 ∈ (Base‘(mulGrp‘𝑅)))) |
| 8 | 7 | 3ad2ant1 1020 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∈ 𝐵 ↔ 𝑋 ∈ (Base‘(mulGrp‘𝑅)))) |
| 9 | 4, 8 | mpbid 147 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ (Base‘(mulGrp‘𝑅))) |
| 10 | simp3 1001 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 11 | 6 | eleq2d 2266 | . . . . 5 ⊢ (𝑅 ∈ Ring → (𝑌 ∈ 𝐵 ↔ 𝑌 ∈ (Base‘(mulGrp‘𝑅)))) |
| 12 | 11 | 3ad2ant1 1020 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 ∈ 𝐵 ↔ 𝑌 ∈ (Base‘(mulGrp‘𝑅)))) |
| 13 | 10, 12 | mpbid 147 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ (Base‘(mulGrp‘𝑅))) |
| 14 | eqid 2196 | . . . 4 ⊢ (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅)) | |
| 15 | eqid 2196 | . . . 4 ⊢ (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅)) | |
| 16 | 14, 15 | mndcl 13064 | . . 3 ⊢ (((mulGrp‘𝑅) ∈ Mnd ∧ 𝑋 ∈ (Base‘(mulGrp‘𝑅)) ∧ 𝑌 ∈ (Base‘(mulGrp‘𝑅))) → (𝑋(+g‘(mulGrp‘𝑅))𝑌) ∈ (Base‘(mulGrp‘𝑅))) |
| 17 | 3, 9, 13, 16 | syl3anc 1249 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(+g‘(mulGrp‘𝑅))𝑌) ∈ (Base‘(mulGrp‘𝑅))) |
| 18 | ringcl.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
| 19 | 1, 18 | mgpplusgg 13480 | . . . . 5 ⊢ (𝑅 ∈ Ring → · = (+g‘(mulGrp‘𝑅))) |
| 20 | 19 | oveqd 5939 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝑋 · 𝑌) = (𝑋(+g‘(mulGrp‘𝑅))𝑌)) |
| 21 | 20, 6 | eleq12d 2267 | . . 3 ⊢ (𝑅 ∈ Ring → ((𝑋 · 𝑌) ∈ 𝐵 ↔ (𝑋(+g‘(mulGrp‘𝑅))𝑌) ∈ (Base‘(mulGrp‘𝑅)))) |
| 22 | 21 | 3ad2ant1 1020 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) ∈ 𝐵 ↔ (𝑋(+g‘(mulGrp‘𝑅))𝑌) ∈ (Base‘(mulGrp‘𝑅)))) |
| 23 | 17, 22 | mpbird 167 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2167 ‘cfv 5258 (class class class)co 5922 Basecbs 12678 +gcplusg 12755 .rcmulr 12756 Mndcmnd 13057 mulGrpcmgp 13476 Ringcrg 13552 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-inn 8991 df-2 9049 df-3 9050 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-plusg 12768 df-mulr 12769 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-mgp 13477 df-ring 13554 |
| This theorem is referenced by: ringlz 13599 ringrz 13600 ringnegl 13607 ringnegr 13608 ringmneg1 13609 ringmneg2 13610 ringm2neg 13611 ringsubdi 13612 ringsubdir 13613 mulgass2 13614 ringlghm 13617 ringrghm 13618 ringressid 13619 imasring 13620 qusring2 13622 opprring 13635 dvdsrcl2 13655 dvdsrtr 13657 dvdsrmul1 13658 dvrvald 13690 dvrcl 13691 dvrass 13695 rdivmuldivd 13700 subrgmcl 13789 lmodmcl 13856 lmodprop2d 13904 rmodislmodlem 13906 sralmod 14006 qusrhm 14084 qusmul2 14085 |
| Copyright terms: Public domain | W3C validator |