ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringcl GIF version

Theorem ringcl 13512
Description: Closure of the multiplication operation of a ring. (Contributed by NM, 26-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
ringcl.b 𝐵 = (Base‘𝑅)
ringcl.t · = (.r𝑅)
Assertion
Ref Expression
ringcl ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) ∈ 𝐵)

Proof of Theorem ringcl
StepHypRef Expression
1 eqid 2193 . . . . 5 (mulGrp‘𝑅) = (mulGrp‘𝑅)
21ringmgp 13501 . . . 4 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
323ad2ant1 1020 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (mulGrp‘𝑅) ∈ Mnd)
4 simp2 1000 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
5 ringcl.b . . . . . . 7 𝐵 = (Base‘𝑅)
61, 5mgpbasg 13425 . . . . . 6 (𝑅 ∈ Ring → 𝐵 = (Base‘(mulGrp‘𝑅)))
76eleq2d 2263 . . . . 5 (𝑅 ∈ Ring → (𝑋𝐵𝑋 ∈ (Base‘(mulGrp‘𝑅))))
873ad2ant1 1020 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐵𝑋 ∈ (Base‘(mulGrp‘𝑅))))
94, 8mpbid 147 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → 𝑋 ∈ (Base‘(mulGrp‘𝑅)))
10 simp3 1001 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
116eleq2d 2263 . . . . 5 (𝑅 ∈ Ring → (𝑌𝐵𝑌 ∈ (Base‘(mulGrp‘𝑅))))
12113ad2ant1 1020 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑌𝐵𝑌 ∈ (Base‘(mulGrp‘𝑅))))
1310, 12mpbid 147 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → 𝑌 ∈ (Base‘(mulGrp‘𝑅)))
14 eqid 2193 . . . 4 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
15 eqid 2193 . . . 4 (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅))
1614, 15mndcl 13007 . . 3 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝑋 ∈ (Base‘(mulGrp‘𝑅)) ∧ 𝑌 ∈ (Base‘(mulGrp‘𝑅))) → (𝑋(+g‘(mulGrp‘𝑅))𝑌) ∈ (Base‘(mulGrp‘𝑅)))
173, 9, 13, 16syl3anc 1249 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋(+g‘(mulGrp‘𝑅))𝑌) ∈ (Base‘(mulGrp‘𝑅)))
18 ringcl.t . . . . . 6 · = (.r𝑅)
191, 18mgpplusgg 13423 . . . . 5 (𝑅 ∈ Ring → · = (+g‘(mulGrp‘𝑅)))
2019oveqd 5936 . . . 4 (𝑅 ∈ Ring → (𝑋 · 𝑌) = (𝑋(+g‘(mulGrp‘𝑅))𝑌))
2120, 6eleq12d 2264 . . 3 (𝑅 ∈ Ring → ((𝑋 · 𝑌) ∈ 𝐵 ↔ (𝑋(+g‘(mulGrp‘𝑅))𝑌) ∈ (Base‘(mulGrp‘𝑅))))
22213ad2ant1 1020 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 · 𝑌) ∈ 𝐵 ↔ (𝑋(+g‘(mulGrp‘𝑅))𝑌) ∈ (Base‘(mulGrp‘𝑅))))
2317, 22mpbird 167 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) ∈ 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 980   = wceq 1364  wcel 2164  cfv 5255  (class class class)co 5919  Basecbs 12621  +gcplusg 12698  .rcmulr 12699  Mndcmnd 13000  mulGrpcmgp 13419  Ringcrg 13495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fun 5257  df-fn 5258  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-plusg 12711  df-mulr 12712  df-mgm 12942  df-sgrp 12988  df-mnd 13001  df-mgp 13420  df-ring 13497
This theorem is referenced by:  ringlz  13542  ringrz  13543  ringnegl  13550  ringnegr  13551  ringmneg1  13552  ringmneg2  13553  ringm2neg  13554  ringsubdi  13555  ringsubdir  13556  mulgass2  13557  ringlghm  13560  ringrghm  13561  ringressid  13562  imasring  13563  qusring2  13565  opprring  13578  dvdsrcl2  13598  dvdsrtr  13600  dvdsrmul1  13601  dvrvald  13633  dvrcl  13634  dvrass  13638  rdivmuldivd  13643  subrgmcl  13732  lmodmcl  13799  lmodprop2d  13847  rmodislmodlem  13849  sralmod  13949  qusrhm  14027  qusmul2  14028
  Copyright terms: Public domain W3C validator