ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringcl GIF version

Theorem ringcl 13509
Description: Closure of the multiplication operation of a ring. (Contributed by NM, 26-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
ringcl.b 𝐵 = (Base‘𝑅)
ringcl.t · = (.r𝑅)
Assertion
Ref Expression
ringcl ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) ∈ 𝐵)

Proof of Theorem ringcl
StepHypRef Expression
1 eqid 2193 . . . . 5 (mulGrp‘𝑅) = (mulGrp‘𝑅)
21ringmgp 13498 . . . 4 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
323ad2ant1 1020 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (mulGrp‘𝑅) ∈ Mnd)
4 simp2 1000 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
5 ringcl.b . . . . . . 7 𝐵 = (Base‘𝑅)
61, 5mgpbasg 13422 . . . . . 6 (𝑅 ∈ Ring → 𝐵 = (Base‘(mulGrp‘𝑅)))
76eleq2d 2263 . . . . 5 (𝑅 ∈ Ring → (𝑋𝐵𝑋 ∈ (Base‘(mulGrp‘𝑅))))
873ad2ant1 1020 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐵𝑋 ∈ (Base‘(mulGrp‘𝑅))))
94, 8mpbid 147 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → 𝑋 ∈ (Base‘(mulGrp‘𝑅)))
10 simp3 1001 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
116eleq2d 2263 . . . . 5 (𝑅 ∈ Ring → (𝑌𝐵𝑌 ∈ (Base‘(mulGrp‘𝑅))))
12113ad2ant1 1020 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑌𝐵𝑌 ∈ (Base‘(mulGrp‘𝑅))))
1310, 12mpbid 147 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → 𝑌 ∈ (Base‘(mulGrp‘𝑅)))
14 eqid 2193 . . . 4 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
15 eqid 2193 . . . 4 (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅))
1614, 15mndcl 13004 . . 3 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝑋 ∈ (Base‘(mulGrp‘𝑅)) ∧ 𝑌 ∈ (Base‘(mulGrp‘𝑅))) → (𝑋(+g‘(mulGrp‘𝑅))𝑌) ∈ (Base‘(mulGrp‘𝑅)))
173, 9, 13, 16syl3anc 1249 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋(+g‘(mulGrp‘𝑅))𝑌) ∈ (Base‘(mulGrp‘𝑅)))
18 ringcl.t . . . . . 6 · = (.r𝑅)
191, 18mgpplusgg 13420 . . . . 5 (𝑅 ∈ Ring → · = (+g‘(mulGrp‘𝑅)))
2019oveqd 5935 . . . 4 (𝑅 ∈ Ring → (𝑋 · 𝑌) = (𝑋(+g‘(mulGrp‘𝑅))𝑌))
2120, 6eleq12d 2264 . . 3 (𝑅 ∈ Ring → ((𝑋 · 𝑌) ∈ 𝐵 ↔ (𝑋(+g‘(mulGrp‘𝑅))𝑌) ∈ (Base‘(mulGrp‘𝑅))))
22213ad2ant1 1020 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 · 𝑌) ∈ 𝐵 ↔ (𝑋(+g‘(mulGrp‘𝑅))𝑌) ∈ (Base‘(mulGrp‘𝑅))))
2317, 22mpbird 167 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) ∈ 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 980   = wceq 1364  wcel 2164  cfv 5254  (class class class)co 5918  Basecbs 12618  +gcplusg 12695  .rcmulr 12696  Mndcmnd 12997  mulGrpcmgp 13416  Ringcrg 13492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-plusg 12708  df-mulr 12709  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-mgp 13417  df-ring 13494
This theorem is referenced by:  ringlz  13539  ringrz  13540  ringnegl  13547  ringnegr  13548  ringmneg1  13549  ringmneg2  13550  ringm2neg  13551  ringsubdi  13552  ringsubdir  13553  mulgass2  13554  ringlghm  13557  ringrghm  13558  ringressid  13559  imasring  13560  qusring2  13562  opprring  13575  dvdsrcl2  13595  dvdsrtr  13597  dvdsrmul1  13598  dvrvald  13630  dvrcl  13631  dvrass  13635  rdivmuldivd  13640  subrgmcl  13729  lmodmcl  13796  lmodprop2d  13844  rmodislmodlem  13846  sralmod  13946  qusrhm  14024  qusmul2  14025
  Copyright terms: Public domain W3C validator