ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringcl GIF version

Theorem ringcl 13984
Description: Closure of the multiplication operation of a ring. (Contributed by NM, 26-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
ringcl.b 𝐵 = (Base‘𝑅)
ringcl.t · = (.r𝑅)
Assertion
Ref Expression
ringcl ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) ∈ 𝐵)

Proof of Theorem ringcl
StepHypRef Expression
1 eqid 2229 . . . . 5 (mulGrp‘𝑅) = (mulGrp‘𝑅)
21ringmgp 13973 . . . 4 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
323ad2ant1 1042 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (mulGrp‘𝑅) ∈ Mnd)
4 simp2 1022 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
5 ringcl.b . . . . . . 7 𝐵 = (Base‘𝑅)
61, 5mgpbasg 13897 . . . . . 6 (𝑅 ∈ Ring → 𝐵 = (Base‘(mulGrp‘𝑅)))
76eleq2d 2299 . . . . 5 (𝑅 ∈ Ring → (𝑋𝐵𝑋 ∈ (Base‘(mulGrp‘𝑅))))
873ad2ant1 1042 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋𝐵𝑋 ∈ (Base‘(mulGrp‘𝑅))))
94, 8mpbid 147 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → 𝑋 ∈ (Base‘(mulGrp‘𝑅)))
10 simp3 1023 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
116eleq2d 2299 . . . . 5 (𝑅 ∈ Ring → (𝑌𝐵𝑌 ∈ (Base‘(mulGrp‘𝑅))))
12113ad2ant1 1042 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑌𝐵𝑌 ∈ (Base‘(mulGrp‘𝑅))))
1310, 12mpbid 147 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → 𝑌 ∈ (Base‘(mulGrp‘𝑅)))
14 eqid 2229 . . . 4 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
15 eqid 2229 . . . 4 (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅))
1614, 15mndcl 13464 . . 3 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝑋 ∈ (Base‘(mulGrp‘𝑅)) ∧ 𝑌 ∈ (Base‘(mulGrp‘𝑅))) → (𝑋(+g‘(mulGrp‘𝑅))𝑌) ∈ (Base‘(mulGrp‘𝑅)))
173, 9, 13, 16syl3anc 1271 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋(+g‘(mulGrp‘𝑅))𝑌) ∈ (Base‘(mulGrp‘𝑅)))
18 ringcl.t . . . . . 6 · = (.r𝑅)
191, 18mgpplusgg 13895 . . . . 5 (𝑅 ∈ Ring → · = (+g‘(mulGrp‘𝑅)))
2019oveqd 6024 . . . 4 (𝑅 ∈ Ring → (𝑋 · 𝑌) = (𝑋(+g‘(mulGrp‘𝑅))𝑌))
2120, 6eleq12d 2300 . . 3 (𝑅 ∈ Ring → ((𝑋 · 𝑌) ∈ 𝐵 ↔ (𝑋(+g‘(mulGrp‘𝑅))𝑌) ∈ (Base‘(mulGrp‘𝑅))))
22213ad2ant1 1042 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 · 𝑌) ∈ 𝐵 ↔ (𝑋(+g‘(mulGrp‘𝑅))𝑌) ∈ (Base‘(mulGrp‘𝑅))))
2317, 22mpbird 167 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) ∈ 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 1002   = wceq 1395  wcel 2200  cfv 5318  (class class class)co 6007  Basecbs 13040  +gcplusg 13118  .rcmulr 13119  Mndcmnd 13457  mulGrpcmgp 13891  Ringcrg 13967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-pre-ltirr 8119  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-pnf 8191  df-mnf 8192  df-ltxr 8194  df-inn 9119  df-2 9177  df-3 9178  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-plusg 13131  df-mulr 13132  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-mgp 13892  df-ring 13969
This theorem is referenced by:  ringlz  14014  ringrz  14015  ringnegl  14022  ringnegr  14023  ringmneg1  14024  ringmneg2  14025  ringm2neg  14026  ringsubdi  14027  ringsubdir  14028  mulgass2  14029  ringlghm  14032  ringrghm  14033  ringressid  14034  imasring  14035  qusring2  14037  opprring  14050  dvdsrcl2  14071  dvdsrtr  14073  dvdsrmul1  14074  dvrvald  14106  dvrcl  14107  dvrass  14111  rdivmuldivd  14116  subrgmcl  14205  lmodmcl  14272  lmodprop2d  14320  rmodislmodlem  14322  sralmod  14422  qusrhm  14500  qusmul2  14501
  Copyright terms: Public domain W3C validator