| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ringcl | GIF version | ||
| Description: Closure of the multiplication operation of a ring. (Contributed by NM, 26-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| ringcl.b | ⊢ 𝐵 = (Base‘𝑅) |
| ringcl.t | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| ringcl | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2206 | . . . . 5 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 2 | 1 | ringmgp 13834 | . . . 4 ⊢ (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd) |
| 3 | 2 | 3ad2ant1 1021 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (mulGrp‘𝑅) ∈ Mnd) |
| 4 | simp2 1001 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 5 | ringcl.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
| 6 | 1, 5 | mgpbasg 13758 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝐵 = (Base‘(mulGrp‘𝑅))) |
| 7 | 6 | eleq2d 2276 | . . . . 5 ⊢ (𝑅 ∈ Ring → (𝑋 ∈ 𝐵 ↔ 𝑋 ∈ (Base‘(mulGrp‘𝑅)))) |
| 8 | 7 | 3ad2ant1 1021 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∈ 𝐵 ↔ 𝑋 ∈ (Base‘(mulGrp‘𝑅)))) |
| 9 | 4, 8 | mpbid 147 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ (Base‘(mulGrp‘𝑅))) |
| 10 | simp3 1002 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) | |
| 11 | 6 | eleq2d 2276 | . . . . 5 ⊢ (𝑅 ∈ Ring → (𝑌 ∈ 𝐵 ↔ 𝑌 ∈ (Base‘(mulGrp‘𝑅)))) |
| 12 | 11 | 3ad2ant1 1021 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑌 ∈ 𝐵 ↔ 𝑌 ∈ (Base‘(mulGrp‘𝑅)))) |
| 13 | 10, 12 | mpbid 147 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ (Base‘(mulGrp‘𝑅))) |
| 14 | eqid 2206 | . . . 4 ⊢ (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅)) | |
| 15 | eqid 2206 | . . . 4 ⊢ (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅)) | |
| 16 | 14, 15 | mndcl 13325 | . . 3 ⊢ (((mulGrp‘𝑅) ∈ Mnd ∧ 𝑋 ∈ (Base‘(mulGrp‘𝑅)) ∧ 𝑌 ∈ (Base‘(mulGrp‘𝑅))) → (𝑋(+g‘(mulGrp‘𝑅))𝑌) ∈ (Base‘(mulGrp‘𝑅))) |
| 17 | 3, 9, 13, 16 | syl3anc 1250 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋(+g‘(mulGrp‘𝑅))𝑌) ∈ (Base‘(mulGrp‘𝑅))) |
| 18 | ringcl.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
| 19 | 1, 18 | mgpplusgg 13756 | . . . . 5 ⊢ (𝑅 ∈ Ring → · = (+g‘(mulGrp‘𝑅))) |
| 20 | 19 | oveqd 5973 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝑋 · 𝑌) = (𝑋(+g‘(mulGrp‘𝑅))𝑌)) |
| 21 | 20, 6 | eleq12d 2277 | . . 3 ⊢ (𝑅 ∈ Ring → ((𝑋 · 𝑌) ∈ 𝐵 ↔ (𝑋(+g‘(mulGrp‘𝑅))𝑌) ∈ (Base‘(mulGrp‘𝑅)))) |
| 22 | 21 | 3ad2ant1 1021 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) ∈ 𝐵 ↔ (𝑋(+g‘(mulGrp‘𝑅))𝑌) ∈ (Base‘(mulGrp‘𝑅)))) |
| 23 | 17, 22 | mpbird 167 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) ∈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ‘cfv 5279 (class class class)co 5956 Basecbs 12902 +gcplusg 12979 .rcmulr 12980 Mndcmnd 13318 mulGrpcmgp 13752 Ringcrg 13828 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-addcom 8040 ax-addass 8042 ax-i2m1 8045 ax-0lt1 8046 ax-0id 8048 ax-rnegex 8049 ax-pre-ltirr 8052 ax-pre-ltadd 8056 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-br 4051 df-opab 4113 df-mpt 4114 df-id 4347 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-iota 5240 df-fun 5281 df-fn 5282 df-fv 5287 df-ov 5959 df-oprab 5960 df-mpo 5961 df-pnf 8124 df-mnf 8125 df-ltxr 8127 df-inn 9052 df-2 9110 df-3 9111 df-ndx 12905 df-slot 12906 df-base 12908 df-sets 12909 df-plusg 12992 df-mulr 12993 df-mgm 13258 df-sgrp 13304 df-mnd 13319 df-mgp 13753 df-ring 13830 |
| This theorem is referenced by: ringlz 13875 ringrz 13876 ringnegl 13883 ringnegr 13884 ringmneg1 13885 ringmneg2 13886 ringm2neg 13887 ringsubdi 13888 ringsubdir 13889 mulgass2 13890 ringlghm 13893 ringrghm 13894 ringressid 13895 imasring 13896 qusring2 13898 opprring 13911 dvdsrcl2 13931 dvdsrtr 13933 dvdsrmul1 13934 dvrvald 13966 dvrcl 13967 dvrass 13971 rdivmuldivd 13976 subrgmcl 14065 lmodmcl 14132 lmodprop2d 14180 rmodislmodlem 14182 sralmod 14282 qusrhm 14360 qusmul2 14361 |
| Copyright terms: Public domain | W3C validator |