ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unitinvcl GIF version

Theorem unitinvcl 13757
Description: The inverse of a unit exists and is a unit. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
unitinvcl.1 𝑈 = (Unit‘𝑅)
unitinvcl.2 𝐼 = (invr𝑅)
Assertion
Ref Expression
unitinvcl ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝐼𝑋) ∈ 𝑈)

Proof of Theorem unitinvcl
StepHypRef Expression
1 unitinvcl.1 . . . . . . 7 𝑈 = (Unit‘𝑅)
21a1i 9 . . . . . 6 (𝑅 ∈ Ring → 𝑈 = (Unit‘𝑅))
3 eqid 2196 . . . . . . 7 ((mulGrp‘𝑅) ↾s 𝑈) = ((mulGrp‘𝑅) ↾s 𝑈)
43a1i 9 . . . . . 6 (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s 𝑈) = ((mulGrp‘𝑅) ↾s 𝑈))
5 ringsrg 13681 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
62, 4, 5unitgrpbasd 13749 . . . . 5 (𝑅 ∈ Ring → 𝑈 = (Base‘((mulGrp‘𝑅) ↾s 𝑈)))
76eleq2d 2266 . . . 4 (𝑅 ∈ Ring → (𝑋𝑈𝑋 ∈ (Base‘((mulGrp‘𝑅) ↾s 𝑈))))
87pm5.32i 454 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝑈) ↔ (𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘((mulGrp‘𝑅) ↾s 𝑈))))
91, 3unitgrp 13750 . . . 4 (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp)
10 eqid 2196 . . . . 5 (Base‘((mulGrp‘𝑅) ↾s 𝑈)) = (Base‘((mulGrp‘𝑅) ↾s 𝑈))
11 eqid 2196 . . . . 5 (invg‘((mulGrp‘𝑅) ↾s 𝑈)) = (invg‘((mulGrp‘𝑅) ↾s 𝑈))
1210, 11grpinvcl 13252 . . . 4 ((((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp ∧ 𝑋 ∈ (Base‘((mulGrp‘𝑅) ↾s 𝑈))) → ((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑋) ∈ (Base‘((mulGrp‘𝑅) ↾s 𝑈)))
139, 12sylan 283 . . 3 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘((mulGrp‘𝑅) ↾s 𝑈))) → ((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑋) ∈ (Base‘((mulGrp‘𝑅) ↾s 𝑈)))
148, 13sylbi 121 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → ((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑋) ∈ (Base‘((mulGrp‘𝑅) ↾s 𝑈)))
15 unitinvcl.2 . . . . . . 7 𝐼 = (invr𝑅)
1615a1i 9 . . . . . 6 (𝑅 ∈ Ring → 𝐼 = (invr𝑅))
17 id 19 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Ring)
182, 4, 16, 17invrfvald 13756 . . . . 5 (𝑅 ∈ Ring → 𝐼 = (invg‘((mulGrp‘𝑅) ↾s 𝑈)))
1918fveq1d 5563 . . . 4 (𝑅 ∈ Ring → (𝐼𝑋) = ((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑋))
2019, 6eleq12d 2267 . . 3 (𝑅 ∈ Ring → ((𝐼𝑋) ∈ 𝑈 ↔ ((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑋) ∈ (Base‘((mulGrp‘𝑅) ↾s 𝑈))))
2120adantr 276 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → ((𝐼𝑋) ∈ 𝑈 ↔ ((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑋) ∈ (Base‘((mulGrp‘𝑅) ↾s 𝑈))))
2214, 21mpbird 167 1 ((𝑅 ∈ Ring ∧ 𝑋𝑈) → (𝐼𝑋) ∈ 𝑈)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  cfv 5259  (class class class)co 5925  Basecbs 12705  s cress 12706  Grpcgrp 13204  invgcminusg 13205  mulGrpcmgp 13554  Ringcrg 13630  Unitcui 13721  invrcinvr 13754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-addcom 7998  ax-addass 8000  ax-i2m1 8003  ax-0lt1 8004  ax-0id 8006  ax-rnegex 8007  ax-pre-ltirr 8010  ax-pre-lttrn 8012  ax-pre-ltadd 8014
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-tpos 6312  df-pnf 8082  df-mnf 8083  df-ltxr 8085  df-inn 9010  df-2 9068  df-3 9069  df-ndx 12708  df-slot 12709  df-base 12711  df-sets 12712  df-iress 12713  df-plusg 12795  df-mulr 12796  df-0g 12962  df-mgm 13060  df-sgrp 13106  df-mnd 13121  df-grp 13207  df-minusg 13208  df-cmn 13494  df-abl 13495  df-mgp 13555  df-ur 13594  df-srg 13598  df-ring 13632  df-oppr 13702  df-dvdsr 13723  df-unit 13724  df-invr 13755
This theorem is referenced by:  ringinvcl  13759  dvrvald  13768  unitdvcl  13770  dvrdir  13777  rdivmuldivd  13778  rhmunitinv  13812  subrguss  13870  subrgugrp  13874
  Copyright terms: Public domain W3C validator