| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unitinvcl | GIF version | ||
| Description: The inverse of a unit exists and is a unit. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| Ref | Expression |
|---|---|
| unitinvcl.1 | ⊢ 𝑈 = (Unit‘𝑅) |
| unitinvcl.2 | ⊢ 𝐼 = (invr‘𝑅) |
| Ref | Expression |
|---|---|
| unitinvcl | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝐼‘𝑋) ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unitinvcl.1 | . . . . . . 7 ⊢ 𝑈 = (Unit‘𝑅) | |
| 2 | 1 | a1i 9 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑈 = (Unit‘𝑅)) |
| 3 | eqid 2206 | . . . . . . 7 ⊢ ((mulGrp‘𝑅) ↾s 𝑈) = ((mulGrp‘𝑅) ↾s 𝑈) | |
| 4 | 3 | a1i 9 | . . . . . 6 ⊢ (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s 𝑈) = ((mulGrp‘𝑅) ↾s 𝑈)) |
| 5 | ringsrg 13853 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) | |
| 6 | 2, 4, 5 | unitgrpbasd 13921 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑈 = (Base‘((mulGrp‘𝑅) ↾s 𝑈))) |
| 7 | 6 | eleq2d 2276 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝑋 ∈ 𝑈 ↔ 𝑋 ∈ (Base‘((mulGrp‘𝑅) ↾s 𝑈)))) |
| 8 | 7 | pm5.32i 454 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) ↔ (𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘((mulGrp‘𝑅) ↾s 𝑈)))) |
| 9 | 1, 3 | unitgrp 13922 | . . . 4 ⊢ (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp) |
| 10 | eqid 2206 | . . . . 5 ⊢ (Base‘((mulGrp‘𝑅) ↾s 𝑈)) = (Base‘((mulGrp‘𝑅) ↾s 𝑈)) | |
| 11 | eqid 2206 | . . . . 5 ⊢ (invg‘((mulGrp‘𝑅) ↾s 𝑈)) = (invg‘((mulGrp‘𝑅) ↾s 𝑈)) | |
| 12 | 10, 11 | grpinvcl 13424 | . . . 4 ⊢ ((((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp ∧ 𝑋 ∈ (Base‘((mulGrp‘𝑅) ↾s 𝑈))) → ((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑋) ∈ (Base‘((mulGrp‘𝑅) ↾s 𝑈))) |
| 13 | 9, 12 | sylan 283 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘((mulGrp‘𝑅) ↾s 𝑈))) → ((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑋) ∈ (Base‘((mulGrp‘𝑅) ↾s 𝑈))) |
| 14 | 8, 13 | sylbi 121 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → ((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑋) ∈ (Base‘((mulGrp‘𝑅) ↾s 𝑈))) |
| 15 | unitinvcl.2 | . . . . . . 7 ⊢ 𝐼 = (invr‘𝑅) | |
| 16 | 15 | a1i 9 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝐼 = (invr‘𝑅)) |
| 17 | id 19 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Ring) | |
| 18 | 2, 4, 16, 17 | invrfvald 13928 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝐼 = (invg‘((mulGrp‘𝑅) ↾s 𝑈))) |
| 19 | 18 | fveq1d 5585 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝐼‘𝑋) = ((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑋)) |
| 20 | 19, 6 | eleq12d 2277 | . . 3 ⊢ (𝑅 ∈ Ring → ((𝐼‘𝑋) ∈ 𝑈 ↔ ((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑋) ∈ (Base‘((mulGrp‘𝑅) ↾s 𝑈)))) |
| 21 | 20 | adantr 276 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → ((𝐼‘𝑋) ∈ 𝑈 ↔ ((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑋) ∈ (Base‘((mulGrp‘𝑅) ↾s 𝑈)))) |
| 22 | 14, 21 | mpbird 167 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝐼‘𝑋) ∈ 𝑈) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 ‘cfv 5276 (class class class)co 5951 Basecbs 12876 ↾s cress 12877 Grpcgrp 13376 invgcminusg 13377 mulGrpcmgp 13726 Ringcrg 13802 Unitcui 13893 invrcinvr 13926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-addass 8034 ax-i2m1 8037 ax-0lt1 8038 ax-0id 8040 ax-rnegex 8041 ax-pre-ltirr 8044 ax-pre-lttrn 8046 ax-pre-ltadd 8048 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-tpos 6338 df-pnf 8116 df-mnf 8117 df-ltxr 8119 df-inn 9044 df-2 9102 df-3 9103 df-ndx 12879 df-slot 12880 df-base 12882 df-sets 12883 df-iress 12884 df-plusg 12966 df-mulr 12967 df-0g 13134 df-mgm 13232 df-sgrp 13278 df-mnd 13293 df-grp 13379 df-minusg 13380 df-cmn 13666 df-abl 13667 df-mgp 13727 df-ur 13766 df-srg 13770 df-ring 13804 df-oppr 13874 df-dvdsr 13895 df-unit 13896 df-invr 13927 |
| This theorem is referenced by: ringinvcl 13931 dvrvald 13940 unitdvcl 13942 dvrdir 13949 rdivmuldivd 13950 rhmunitinv 13984 subrguss 14042 subrgugrp 14046 |
| Copyright terms: Public domain | W3C validator |