![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > unitinvcl | GIF version |
Description: The inverse of a unit exists and is a unit. (Contributed by Mario Carneiro, 2-Dec-2014.) |
Ref | Expression |
---|---|
unitinvcl.1 | ⊢ 𝑈 = (Unit‘𝑅) |
unitinvcl.2 | ⊢ 𝐼 = (invr‘𝑅) |
Ref | Expression |
---|---|
unitinvcl | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝐼‘𝑋) ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unitinvcl.1 | . . . . . . 7 ⊢ 𝑈 = (Unit‘𝑅) | |
2 | 1 | a1i 9 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑈 = (Unit‘𝑅)) |
3 | eqid 2193 | . . . . . . 7 ⊢ ((mulGrp‘𝑅) ↾s 𝑈) = ((mulGrp‘𝑅) ↾s 𝑈) | |
4 | 3 | a1i 9 | . . . . . 6 ⊢ (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s 𝑈) = ((mulGrp‘𝑅) ↾s 𝑈)) |
5 | ringsrg 13546 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) | |
6 | 2, 4, 5 | unitgrpbasd 13614 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑈 = (Base‘((mulGrp‘𝑅) ↾s 𝑈))) |
7 | 6 | eleq2d 2263 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝑋 ∈ 𝑈 ↔ 𝑋 ∈ (Base‘((mulGrp‘𝑅) ↾s 𝑈)))) |
8 | 7 | pm5.32i 454 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) ↔ (𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘((mulGrp‘𝑅) ↾s 𝑈)))) |
9 | 1, 3 | unitgrp 13615 | . . . 4 ⊢ (𝑅 ∈ Ring → ((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp) |
10 | eqid 2193 | . . . . 5 ⊢ (Base‘((mulGrp‘𝑅) ↾s 𝑈)) = (Base‘((mulGrp‘𝑅) ↾s 𝑈)) | |
11 | eqid 2193 | . . . . 5 ⊢ (invg‘((mulGrp‘𝑅) ↾s 𝑈)) = (invg‘((mulGrp‘𝑅) ↾s 𝑈)) | |
12 | 10, 11 | grpinvcl 13123 | . . . 4 ⊢ ((((mulGrp‘𝑅) ↾s 𝑈) ∈ Grp ∧ 𝑋 ∈ (Base‘((mulGrp‘𝑅) ↾s 𝑈))) → ((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑋) ∈ (Base‘((mulGrp‘𝑅) ↾s 𝑈))) |
13 | 9, 12 | sylan 283 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘((mulGrp‘𝑅) ↾s 𝑈))) → ((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑋) ∈ (Base‘((mulGrp‘𝑅) ↾s 𝑈))) |
14 | 8, 13 | sylbi 121 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → ((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑋) ∈ (Base‘((mulGrp‘𝑅) ↾s 𝑈))) |
15 | unitinvcl.2 | . . . . . . 7 ⊢ 𝐼 = (invr‘𝑅) | |
16 | 15 | a1i 9 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝐼 = (invr‘𝑅)) |
17 | id 19 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Ring) | |
18 | 2, 4, 16, 17 | invrfvald 13621 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝐼 = (invg‘((mulGrp‘𝑅) ↾s 𝑈))) |
19 | 18 | fveq1d 5557 | . . . 4 ⊢ (𝑅 ∈ Ring → (𝐼‘𝑋) = ((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑋)) |
20 | 19, 6 | eleq12d 2264 | . . 3 ⊢ (𝑅 ∈ Ring → ((𝐼‘𝑋) ∈ 𝑈 ↔ ((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑋) ∈ (Base‘((mulGrp‘𝑅) ↾s 𝑈)))) |
21 | 20 | adantr 276 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → ((𝐼‘𝑋) ∈ 𝑈 ↔ ((invg‘((mulGrp‘𝑅) ↾s 𝑈))‘𝑋) ∈ (Base‘((mulGrp‘𝑅) ↾s 𝑈)))) |
22 | 14, 21 | mpbird 167 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝐼‘𝑋) ∈ 𝑈) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2164 ‘cfv 5255 (class class class)co 5919 Basecbs 12621 ↾s cress 12622 Grpcgrp 13075 invgcminusg 13076 mulGrpcmgp 13419 Ringcrg 13495 Unitcui 13586 invrcinvr 13619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-pre-ltirr 7986 ax-pre-lttrn 7988 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-tpos 6300 df-pnf 8058 df-mnf 8059 df-ltxr 8061 df-inn 8985 df-2 9043 df-3 9044 df-ndx 12624 df-slot 12625 df-base 12627 df-sets 12628 df-iress 12629 df-plusg 12711 df-mulr 12712 df-0g 12872 df-mgm 12942 df-sgrp 12988 df-mnd 13001 df-grp 13078 df-minusg 13079 df-cmn 13359 df-abl 13360 df-mgp 13420 df-ur 13459 df-srg 13463 df-ring 13497 df-oppr 13567 df-dvdsr 13588 df-unit 13589 df-invr 13620 |
This theorem is referenced by: ringinvcl 13624 dvrvald 13633 unitdvcl 13635 dvrdir 13642 rdivmuldivd 13643 rhmunitinv 13677 subrguss 13735 subrgugrp 13739 |
Copyright terms: Public domain | W3C validator |