Proof of Theorem isrngd
| Step | Hyp | Ref
| Expression |
| 1 | | isrngd.g |
. 2
⊢ (𝜑 → 𝑅 ∈ Abel) |
| 2 | | isrngd.b |
. . . 4
⊢ (𝜑 → 𝐵 = (Base‘𝑅)) |
| 3 | | eqid 2196 |
. . . . . 6
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
| 4 | | eqid 2196 |
. . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 5 | 3, 4 | mgpbasg 13482 |
. . . . 5
⊢ (𝑅 ∈ Abel →
(Base‘𝑅) =
(Base‘(mulGrp‘𝑅))) |
| 6 | 1, 5 | syl 14 |
. . . 4
⊢ (𝜑 → (Base‘𝑅) =
(Base‘(mulGrp‘𝑅))) |
| 7 | 2, 6 | eqtrd 2229 |
. . 3
⊢ (𝜑 → 𝐵 = (Base‘(mulGrp‘𝑅))) |
| 8 | | isrngd.t |
. . . 4
⊢ (𝜑 → · =
(.r‘𝑅)) |
| 9 | | eqid 2196 |
. . . . . 6
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 10 | 3, 9 | mgpplusgg 13480 |
. . . . 5
⊢ (𝑅 ∈ Abel →
(.r‘𝑅) =
(+g‘(mulGrp‘𝑅))) |
| 11 | 1, 10 | syl 14 |
. . . 4
⊢ (𝜑 → (.r‘𝑅) =
(+g‘(mulGrp‘𝑅))) |
| 12 | 8, 11 | eqtrd 2229 |
. . 3
⊢ (𝜑 → · =
(+g‘(mulGrp‘𝑅))) |
| 13 | | isrngd.c |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 · 𝑦) ∈ 𝐵) |
| 14 | | isrngd.a |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧))) |
| 15 | 3 | mgpex 13481 |
. . . 4
⊢ (𝑅 ∈ Abel →
(mulGrp‘𝑅) ∈
V) |
| 16 | 1, 15 | syl 14 |
. . 3
⊢ (𝜑 → (mulGrp‘𝑅) ∈ V) |
| 17 | 7, 12, 13, 14, 16 | issgrpd 13055 |
. 2
⊢ (𝜑 → (mulGrp‘𝑅) ∈ Smgrp) |
| 18 | 2 | eleq2d 2266 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (Base‘𝑅))) |
| 19 | 2 | eleq2d 2266 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ 𝐵 ↔ 𝑦 ∈ (Base‘𝑅))) |
| 20 | 2 | eleq2d 2266 |
. . . . . 6
⊢ (𝜑 → (𝑧 ∈ 𝐵 ↔ 𝑧 ∈ (Base‘𝑅))) |
| 21 | 18, 19, 20 | 3anbi123d 1323 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) ↔ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅)))) |
| 22 | 21 | biimpar 297 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) |
| 23 | | isrngd.d |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧))) |
| 24 | 8 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → · =
(.r‘𝑅)) |
| 25 | | eqidd 2197 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑥 = 𝑥) |
| 26 | | isrngd.p |
. . . . . . . 8
⊢ (𝜑 → + =
(+g‘𝑅)) |
| 27 | 26 | oveqdr 5950 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦 + 𝑧) = (𝑦(+g‘𝑅)𝑧)) |
| 28 | 24, 25, 27 | oveq123d 5943 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥 · (𝑦 + 𝑧)) = (𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧))) |
| 29 | 26 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → + =
(+g‘𝑅)) |
| 30 | 8 | oveqdr 5950 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥 · 𝑦) = (𝑥(.r‘𝑅)𝑦)) |
| 31 | 8 | oveqdr 5950 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥 · 𝑧) = (𝑥(.r‘𝑅)𝑧)) |
| 32 | 29, 30, 31 | oveq123d 5943 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 · 𝑦) + (𝑥 · 𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧))) |
| 33 | 23, 28, 32 | 3eqtr3d 2237 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧))) |
| 34 | | isrngd.e |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧))) |
| 35 | 26 | oveqdr 5950 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑥 + 𝑦) = (𝑥(+g‘𝑅)𝑦)) |
| 36 | | eqidd 2197 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → 𝑧 = 𝑧) |
| 37 | 24, 35, 36 | oveq123d 5943 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧)) |
| 38 | 8 | oveqdr 5950 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → (𝑦 · 𝑧) = (𝑦(.r‘𝑅)𝑧)) |
| 39 | 29, 31, 38 | oveq123d 5943 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 · 𝑧) + (𝑦 · 𝑧)) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧))) |
| 40 | 34, 37, 39 | 3eqtr3d 2237 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧))) |
| 41 | 33, 40 | jca 306 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧)))) |
| 42 | 22, 41 | syldan 282 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧)))) |
| 43 | 42 | ralrimivvva 2580 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧)))) |
| 44 | | eqid 2196 |
. . 3
⊢
(+g‘𝑅) = (+g‘𝑅) |
| 45 | 4, 3, 44, 9 | isrng 13490 |
. 2
⊢ (𝑅 ∈ Rng ↔ (𝑅 ∈ Abel ∧
(mulGrp‘𝑅) ∈
Smgrp ∧ ∀𝑥
∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)∀𝑧 ∈ (Base‘𝑅)((𝑥(.r‘𝑅)(𝑦(+g‘𝑅)𝑧)) = ((𝑥(.r‘𝑅)𝑦)(+g‘𝑅)(𝑥(.r‘𝑅)𝑧)) ∧ ((𝑥(+g‘𝑅)𝑦)(.r‘𝑅)𝑧) = ((𝑥(.r‘𝑅)𝑧)(+g‘𝑅)(𝑦(.r‘𝑅)𝑧))))) |
| 46 | 1, 17, 43, 45 | syl3anbrc 1183 |
1
⊢ (𝜑 → 𝑅 ∈ Rng) |